引言
八皇后问题是一个经典的计算机科学问题,涉及在8x8的棋盘上放置八个皇后,使得它们彼此之间无法相互攻击。这个问题可以通过递归和非递归两种方法来解决,本文将详细介绍八皇后问题的规则、递归解法和非递归解法,并提供C++代码实现。
一、八皇后问题的规则
八皇后问题的目标是在一个8x8的棋盘上放置八个皇后,使得每个皇后都不会互相攻击。皇后可以水平、垂直或对角线移动,因此不能在同一行、同一列或同一对角线上放置两个皇后。八皇后问题的解决方案要求在棋盘上找到合法的位置布局。
二、递归解法
递归是解决八皇后问题最常用的方法之一。下面是八皇后问题的递归解法步骤:
- 设计一个辅助函数来处理每一行的皇后放置。
- 对于每一行,遍历所有列,尝试将皇后放置在当前位置。
- 如果当前位置与之前放置的皇后位置冲突(同一列或同一对角线),则回溯到上一行并尝试下一个位置。
- 如果所有列都尝试过后仍然无法放置皇后,则回溯到上一行并继续尝试下一个位置。
- 当放置的皇后数量达到八个时,找到了一种合法的解决方案。
通过递归调用上述辅助函数,并在找到八个皇后的合法布局时打印出结果,我们可以完成整个八皇后问题的解决。下面是使用C++实现递归解法的示例代码:
#include <iostream>
#include <vector>
void solveNQueensRecursive(std::vector<int>& queens, int row, std::vector<std::vector<std::string>>& result) {
int n = queens.size();
if (row == n) {
std::vector<std::string> solution;
for (int i = 0; i < n; i++) {
std::string rowStr(n, '.');
rowStr[queens[i]] = 'Q';
solution.push_back(rowStr);
}
result.push_back(solution);
return;
}
for (int col = 0; col < n; col++) {
bool canPlace = true;
for (int i = 0; i < row; i++) {
if (queens[i] == col || queens[i] == col + row - i || queens[i] == col - row + i) {
canPlace = false;
break;
}
}
if (canPlace) {
queens[row] = col;
solveNQueensRecursive(queens, row + 1, result);
}
}
}
std::vector<std::vector<std::string>> solveNQueens(int n) {
std::vector<int> queens(n, -1);
std::vector<std::vector<std::string>> result;
solveNQueensRecursive(queens, 0, result);
return result;
}
int main() {
int n = 8;
std::vector<std::vector<std::string>> result = solveNQueens(n);
for (const auto& solution : result) {
for (const auto& row : solution) {
std::cout << row << std::endl;
}
std::cout << std::endl;
}
return 0;
}
以上代码实现了递归解法,并通过一个整数数组queens
来表示皇后的位置,使用.
表示空格,使用Q
表示皇后。程序将打印出所有合法的八皇后布局。
三、非递归解法
除了递归解法外,我们还可以使用非递归方式解决八皇后问题。下面是一种基于栈的非递归解法思路:
- 创建一个空栈和一个整数数组
queens
来存储每一行皇后的位置。 - 遍历第一行的所有列,并将皇后的位置入栈。
- 进入循环,重复以下步骤:
- 如果栈的大小等于八,找到一种合法的解决方案,将皇后位置添加到结果中。
- 如果皇后位置数组的最后一个值大于等于七(即列数达到七),则回溯到上一行并尝试下一个位置。
- 否则,从当前位置的下一列开始,遍历所有列并将新的皇后位置入栈。
- 输出结果。
通过循环和栈的操作来模拟递归过程,我们可以得到非递归解法。下面是使用C++实现非递归解法的示例代码:
#include <iostream>
#include <vector>
#include <stack>
struct Queen {
int row;
int col;
Queen(int r, int c) : row(r), col(c) {}
};
std::vector<std::vector<std::string>> solveNQueens(int n) {
std::vector<std::vector<std::string>> result;
std::stack<Queen> stack;
std::vector<int> queens(n, -1);
int row = 0;
int col = 0;
while (row < n) {
if (col >= n) {
if (stack.empty()) {
break;
}
Queen lastQueen = stack.top();
stack.pop();
queens[lastQueen.row] = -1;
row = lastQueen.row;
col = lastQueen.col + 1;
continue;
}
bool canPlace = true;
for (int i = 0; i < row; i++) {
if (queens[i] == col || queens[i] == col + row - i || queens[i] == col - row + i) {
canPlace = false;
break;
}
}
if (canPlace) {
queens[row] = col;
stack.push(Queen(row, col));
if (row == n - 1) {
std::vector<std::string> solution;
for (int i = 0; i < n; i++) {
std::string rowStr(n, '.');
rowStr[queens[i]] = 'Q';
solution.push_back(rowStr);
}
result.push_back(solution);
}
row++;
col = 0;
}
else {
col++;
}
}
return result;
}
int main() {
int n = 8;
std::vector<std::vector<std::string>> result = solveNQueens(n);
for (const auto& solution : result) {
for (const auto& row : solution) {
std::cout << row << std::endl;
}
std::cout << std::endl;
}
return 0;
}
以上代码实现了非递归解法,并通过一个整数数组queens
来表示。
结论
emm...这篇文章就没结论了哈。还望大佬们三连支持一下。