题目描述:
Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to n (n ≥ 2) burles and the amount of tax he has to pay is calculated as the maximum divisor of n (not equal to n, of course). For example, if n = 6 then Funt has to pay 3 burles, while for n = 25 he needs to pay 5 and if n = 2 he pays only 1 burle.
As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial n in several parts n1 + n2 + … + nk = n (here k is arbitrary, even k = 1 is allowed) and pay the taxes for each part separately. He can’t make some part equal to 1 because it will reveal him. So, the condition ni ≥ 2 should hold for all i from 1 to k.
Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split n in parts.
输入描述:
The first line of the input contains a single integer n (2 ≤ n ≤ 2·109) — the total year income of mr. Funt.
输出描述:
Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.
输入:
4
27
输出:
2
3
题意:
Mr. Frog住在一个税收制度很奇怪的国家如果Mr. Frog的收入为 n (n ≥ 2) 元,那么他应该交n的最大的小于n的因子的税For example,n=6,交3,n=25,交5,n=7,交1,但是Mr. Frog已经身经百战,见得多了,他可以把自己的工资分成任意多份(每份数量为整数)分别按照这个规则缴税来逃税,那么,Mr. Frog最少需要交多少税呢
题解:
先判断是不是素数,如果是素数直接是1
然后偶数可以变成两个素数之和,所以偶数是2
然后看接下来的数-2后是不是素数即可
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
int n;
int main(){
while(scanf("%d",&n)!=EOF){
int k = sqrt(n);
bool flag = false;
for(int i = 2; i <= k; i ++){
if(n % i == 0){
flag = true;
break;
}
}
if(!flag) printf("1\n");
else{
if(n % 2 == 0) printf("2\n");
else{
int t = n - 2;
int kk = sqrt(t);
flag = false;
for(int i = 2; i <= kk; i ++){
if(t % i == 0){
flag = true;
break;
}
}
if(flag) printf("3\n");
else printf("2\n");
}
}
}
return 0;
}