深度学习算法实践12---卷积神经网络(CNN)实现

41 篇文章 8 订阅
27 篇文章 1 订阅

在搞清楚卷积神经网络(CNN)的原理之后,在本篇博文中,我们将讨论基于Theano的算法实现技术。我们还将以MNIST手写数字识别为例,创建卷积神经网络(CNN),训练该网络,使识别误差达到1%以内。

我们首先需要读入MNIST手写数字识别的训练样本集,为此我们定义了一个工具类:

from __future__ import print_function

__docformat__ = 'restructedtext en'

import six.moves.cPickle as pickle
import gzip
import os
import sys
import timeit

import numpy

import theano
import theano.tensor as T

class MnistLoader(object):
    def load_data(self, dataset):
        data_dir, data_file = os.path.split(dataset)
        if data_dir == "" and not os.path.isfile(dataset):
            new_path = os.path.join(
                os.path.split(__file__)[0],
                "..",
                "data",
                dataset
            )
            if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz':
                dataset = new_path

        if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz':
            from six.moves import urllib
            origin = (
                'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz'
            )
            print('Downloading data from %s' % origin)
            urllib.request.urlretrieve(origin, dataset)

        print('... loading data')
        # Load the dataset
        with gzip.open(dataset, 'rb') as f:
            try:
                train_set, valid_set, test_set = pickle.load(f, encoding='latin1')
            except:
                train_set, valid_set, test_set = pickle.load(f)
        def shared_dataset(data_xy, borrow=True):
            data_x, data_y = data_xy
            shared_x = theano.shared(numpy.asarray(data_x,
                                               dtype=theano.config.floatX),
                                 borrow=borrow)
            shared_y = theano.shared(numpy.asarray(data_y,
                                               dtype=theano.config.floatX),
                                 borrow=borrow)
            return shared_x, T.cast(shared_y, 'int32')

        test_set_x, test_set_y = shared_dataset(test_set)
        valid_set_x, valid_set_y = shared_dataset(valid_set)
        train_set_x, train_set_y = shared_dataset(train_set)

        rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y),
            (test_set_x, test_set_y)]
        return rval

这个类在之前我们已经用过,在这里就不详细讲解了。之所以单独定义这个类,是因为如果我们将问题换为其他类型时,我们只需要修改这一个类,就可以实现训练数据的载入了,这样简化了程序修改工作量。

我们所采用的方法是将图像先接入卷积神经网络,之后再接入BP网络的隐藏层,然后再接入逻辑回归的输出层,因此我们需要先定义多层前向网络的隐藏层和逻辑回归输出层。隐藏层的定义如下所示:

from __future__ import print_function

__docformat__ = 'restructedtext en'


import os
import sys
import timeit

import numpy

import theano
import theano.tensor as T


from logistic_regression import LogisticRegression

# start-snippet-1
class HiddenLayer(object):
    def __init__(self, rng, input, n_in, n_out, W=None, b=None,
                 activation=T.tanh):
        self.input = input
        if W is None:
            W_values = numpy.asarray(
                rng.uniform(
                    low=-numpy.sqrt(6. / (n_in + n_out)),
                    high=numpy.sqrt(6. / (n_in + n_out)),
                    size=(n_in, n_out)
                ),
                dtype=theano.config.floatX
            )
            if activation == theano.tensor.nnet.sigmoid:
                W_values *= 4

            W = theano.shared(value=W_values, name='W', borrow=True)

        if b is None:
            b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
            b = theano.shared(value=b_values, name='b', borrow=True)

        self.W = W
        self.b = b

        lin_output = T.dot(input, self.W) + self.b
        self.output = (
            lin_output if activation is None
            else activation(lin_output)
        )
        # parameters of the model
        self.params = [self.W, self.b]
接下来我们定义逻辑回归算法类:

from __future__ import print_function

__docformat__ = 'restructedtext en'

import six.moves.cPickle as pickle
import gzip
import os
import sys
import timeit

import numpy

import theano
import theano.tensor as T

class LogisticRegression(object):  
    def __init__(self, input, n_in, n_out):  
        self.W = theano.shared(  
            value=numpy.zeros(  
                (n_in, n_out),  
                dtype=theano.config.floatX  
            ),  
            name='W',  
            borrow=True  
        )  
        self.b = theano.shared(  
            value=numpy.zeros(  
                (n_out,),  
                dtype=theano.config.floatX  
            ),  
            name='b',  
            borrow=True  
        )  
        self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b)  
        self.y_pred = T.argmax(self.p_y_given_x, axis=1)  
        self.params = [self.W, self.b]  
        self.input = input  
        print("Yantao: ***********************************")
  
    def negative_log_likelihood(self, y):  
        return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y])  
  
    def errors(self, y):  
        if y.ndim != self.y_pred.ndim:  
            raise TypeError(  
                'y should have the same shape as self.y_pred',  
                ('y', y.type, 'y_pred', self.y_pred.type)  
            )  
        if y.dtype.startswith('int'):  
            return T.mean(T.neq(self.y_pred, y))  
        else:  
            raise NotImplementedError()  

这段代码在逻辑回归博文中已经详细讨论过了,这里就不再重复了,有兴趣的读者可以查看这篇博文(逻辑回归算法实现)。

做完上述准备工作之后,我们就可以开始卷积神经网络(CNN)实现了。

我们先来定义基于简化版Lenet5的卷积神经网络(CNN)的定义,代码如下所示:

from __future__ import print_function

import os
import sys
import timeit

import numpy

import theano
import theano.tensor as T
from theano.tensor.signal import pool
from theano.tensor.nnet import conv2d


class LeNetConvPoolLayer(object):
    def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):
        assert image_shape[1] == filter_shape[1]
        self.input = input
        fan_in = numpy.prod(filter_shape[1:])
        fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) //
                   numpy.prod(poolsize))
        W_bound = numpy.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(
            numpy.asarray(
                rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
                dtype=theano.config.floatX
            ),
            borrow=True
        )
        b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True)
        conv_out = conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            input_shape=image_shape
        )
        pooled_out = pool.pool_2d(
            input=conv_out,
            ds=poolsize,
            ignore_border=True
        )
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.params = [self.W, self.b]
        self.input = input
 上面代码实现了对输入信号的卷积操作,并对结果进行最大化池化。

下面我们来看怎样初始化Lenet层,怎样将Lenet层输出信号转为MLP网络隐藏层的输入信号,具体代码如下所示:

layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size, 1, 28, 28),
        filter_shape=(nkerns[0], 1, 5, 5),
        poolsize=(2, 2)
    )
如上所示,我们的输入信号是28*28的黑白图像,而且我们采用的批量学习,因此输入图像就定义为(batch_size, 1, 28, 28),我们对图像进行5*5卷积操作,根据卷积操作定义,最终得到的卷积输出层为(28-5+1,28-5+1)=(24,24)的“图像”,我们采用2*2的最大池化操作,即取2*2区域像素的最大值作为新的像素点的值,则最终输出层得到12*12的输出信号。

接下来,我们将输出信号继续输入一个Lenet卷积池化层,代码如下所示:

    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape=(batch_size, nkerns[0], 12, 12),
        filter_shape=(nkerns[1], nkerns[0], 5, 5),
        poolsize=(2, 2)
    )
如上所示,这时输入信号变化为12*12的图像,我们还使用5*5的卷积核,可以得到(12-5+1, 12-5+1)=(8,8)的图像,采用2*2最大池化操作后,得到(4,4)图像。可以通过调用layer1.output.flatten(2)将其变为一维信号,从而输入MLP的隐藏层。

下面我们定义Lenet引擎来实现装入数据,定义网络模型,训练网络工作,代码如下所示:

from __future__ import print_function

import os
import sys
import timeit

import numpy

import theano
import theano.tensor as T
from theano.tensor.signal import pool
from theano.tensor.nnet import conv2d

from mnist_loader import MnistLoader
from logistic_regression import LogisticRegression
from hidden_layer import HiddenLayer
from lenet_conv_pool_layer import LeNetConvPoolLayer

class LenetMnistEngine(object):
    def __init__(self):
        print("create LenetMnistEngine")

    def train_model(self):
        learning_rate = 0.1
        n_epochs = 200
        dataset = 'mnist.pkl.gz'
        nkerns = [20, 50]
        batch_size = 500
        (n_train_batches, n_test_batches, n_valid_batches, \
                    train_model, test_model, validate_model) = \
                    self.build_model(learning_rate, n_epochs, \
                        dataset, nkerns, batch_size)
        self.train(n_epochs, n_train_batches, n_test_batches, \
                    n_valid_batches, train_model, test_model, \
                    validate_model)

    def run(self):
        print("run the model")
        classifier = pickle.load(open('best_model.pkl', 'rb'))
        predict_model = theano.function(
            inputs=[classifier.input],
            outputs=classifier.logRegressionLayer.y_pred
        )
        dataset='mnist.pkl.gz'
        loader = MnistLoader()
        datasets = loader.load_data(dataset)
        test_set_x, test_set_y = datasets[2]
        test_set_x = test_set_x.get_value()
        predicted_values = predict_model(test_set_x[:10])
        print("Predicted values for the first 10 examples in test set:")
        print(predicted_values)

    def build_model(self, learning_rate=0.1, n_epochs=200,
                        dataset='mnist.pkl.gz',
                        nkerns=[20, 50], batch_size=500):
        rng = numpy.random.RandomState(23455)
        loader = MnistLoader()
        datasets = loader.load_data(dataset)
        train_set_x, train_set_y = datasets[0]
        valid_set_x, valid_set_y = datasets[1]
        test_set_x, test_set_y = datasets[2]
        n_train_batches = train_set_x.get_value(borrow=True).shape[0]
        n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
        n_test_batches = test_set_x.get_value(borrow=True).shape[0]
        n_train_batches //= batch_size
        n_valid_batches //= batch_size
        n_test_batches //= batch_size
        index = T.lscalar() 
        x = T.matrix('x')   
        y = T.ivector('y') 
        print('... building the model')
        layer0_input = x.reshape((batch_size, 1, 28, 28))
        layer0 = LeNetConvPoolLayer(
            rng,
            input=layer0_input,
            image_shape=(batch_size, 1, 28, 28),
            filter_shape=(nkerns[0], 1, 5, 5),
            poolsize=(2, 2)
        )
        layer1 = LeNetConvPoolLayer(
            rng,
            input=layer0.output,
            image_shape=(batch_size, nkerns[0], 12, 12),
            filter_shape=(nkerns[1], nkerns[0], 5, 5),
            poolsize=(2, 2)
        )
        layer2_input = layer1.output.flatten(2)
        layer2 = HiddenLayer(
            rng,
            input=layer2_input,
            n_in=nkerns[1] * 4 * 4,
            n_out=500,
            activation=T.tanh
        )
        layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)
        cost = layer3.negative_log_likelihood(y)
        test_model = theano.function(
            [index],
            layer3.errors(y),
            givens={
                x: test_set_x[index * batch_size: (index + 1) * batch_size],
                y: test_set_y[index * batch_size: (index + 1) * batch_size]
            }
        )
        validate_model = theano.function(
            [index],
            layer3.errors(y),
            givens={
                x: valid_set_x[index * batch_size: (index + 1) * batch_size],
                y: valid_set_y[index * batch_size: (index + 1) * batch_size]
            }
        )
        params = layer3.params + layer2.params + layer1.params + layer0.params
        grads = T.grad(cost, params)
        updates = [
            (param_i, param_i - learning_rate * grad_i)
            for param_i, grad_i in zip(params, grads)
        ]
        train_model = theano.function(
            [index],
            cost,
            updates=updates,
            givens={
                x: train_set_x[index * batch_size: (index + 1) * batch_size],
                y: train_set_y[index * batch_size: (index + 1) * batch_size]
            }
        )
        return (n_train_batches, n_test_batches, n_valid_batches, \
                    train_model, test_model, validate_model)

    def train(self, n_epochs, n_train_batches, n_test_batches, n_valid_batches, 
                train_model, test_model, validate_model):
        print('... training')
        patience = 10000
        patience_increase = 2
        improvement_threshold = 0.995
        validation_frequency = min(n_train_batches, patience // 2)
        best_validation_loss = numpy.inf
        best_iter = 0
        test_score = 0.
        start_time = timeit.default_timer()
        epoch = 0
        done_looping = False
        while (epoch < n_epochs) and (not done_looping):
            epoch = epoch + 1
            for minibatch_index in range(n_train_batches):
                iter = (epoch - 1) * n_train_batches + minibatch_index
                if iter % 100 == 0:
                    print('training @ iter = ', iter)
                cost_ij = train_model(minibatch_index)
                if (iter + 1) % validation_frequency == 0:
                    validation_losses = [validate_model(i) for i
                                         in range(n_valid_batches)]
                    this_validation_loss = numpy.mean(validation_losses)
                    print('epoch %i, minibatch %i/%i, validation error %f %%' %
                          (epoch, minibatch_index + 1, n_train_batches,
                           this_validation_loss * 100.))
                    if this_validation_loss < best_validation_loss:
                        if this_validation_loss < best_validation_loss *  \
                           improvement_threshold:
                            patience = max(patience, iter * patience_increase)
                        best_validation_loss = this_validation_loss
                        best_iter = iter
                        test_losses = [
                            test_model(i)
                            for i in range(n_test_batches)
                        ]
                        test_score = numpy.mean(test_losses)
                        with open('best_model.pkl', 'wb') as f:
                            pickle.dump(classifier, f)
                        print(('     epoch %i, minibatch %i/%i, test error of '
                               'best model %f %%') %
                              (epoch, minibatch_index + 1, n_train_batches,
                               test_score * 100.))
                if patience <= iter:
                    done_looping = True
                    break
        end_time = timeit.default_timer()
        print('Optimization complete.')
        print('Best validation score of %f %% obtained at iteration %i, '
              'with test performance %f %%' %
              (best_validation_loss * 100., best_iter + 1, test_score * 100.))
        print(('The code for file ' +
               os.path.split(__file__)[1] +
               ' ran for %.2fm' % ((end_time - start_time) / 60.)), file=sys.stderr)
上述代码与之前的MLP的训练代码类似,这里就不再讨论了。在我的Mac笔记本上,运行大约6个小时,会得到错误率小于1%的结果。

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
                《人工智能:深度学习入门到精通实战》课程主要就人工智能领域相关的深度学习基础、深度学习计算、卷积神经网络+经典网络、循环神经网络+RNN进阶、优化算法、计算机视觉和自然语言处理等,配套实战案例与项目全部基于真实数据集与实际任务展开,结合深度学习框架进行建模实战。                由浅入深,每一个理论搭配一个实验,引领学员浸泡式逐步掌握各项技能和实战项目,且侧重技能不同,学员的知识体系会更加全面课程大纲:第一章:深度学习基础-深度学习简介01.1-前置知识01.2-传统编程与数据编程01.3-深度学习起源01.4-深度学习崛起与发展01.5-深度学习成功案例01.6-深度学习特点 第二章:深度学习基础-Python基础02.1-PyTorch介绍与环境配置02.2-数据操作与创建Tensor02.3-算术操作、索引与改变形状02.4-线性代数、广播机制与内存开销02.5-Tensor和NumPy相互转换与Tensor on GPU02.6-实验01-创建和使用Tensor-102.7-实验01-创建和使用Tensor-202.8-梯度下降02.9-实验02-梯度下降-102.10-实验02-梯度下降-202.11-自动求梯度概念02.12-自动求梯度实例02.13-实验03-自动求梯度-102.14-实验03-自动求梯度-2 第三章:深度学习基础-线性回归03.1-线性回归讲解03.2-线性回归实例03.3-实验04-从零实现线性回归-103.4-实验04-从零实现线性回归-203.5-实验05-线性回归的简洁实现-103.6-实验05-线性回归的简洁实现-2 第四章:深度学习基础-softmax回归04.1-softmax回归04.2-实验06-FashionMNIST04.3-实验07-从零实现Softmax回归-104.4-实验07-从零实现Softmax回归-204.5-实验08-softmax回归的简洁实现 第五章:深度学习基础-多层感知机05.1-感知机05.2-多层感知机05.3-多层感知机与神经网络05.4-激活函数05.5-正向传播05.6-反向传播05.7-正向传播和反向传播05.8-批大小05.9-实验09-从零实现MLP05.10-实验10-MLP的简洁实现 第六章:深度学习基础-模型选择、欠拟合和过拟合06.1-训练误差和泛化误差06.2-模型选择06.3-欠拟合和过拟合06.4-权重衰减06.5-丢弃法06.6-实验11-多项式函数拟合实验06.7-实验12-高维线性回归实验-106.8-实验12-高维线性回归实验-206.9-实验13-Dropout 第七章:深度学习基础-数值稳定性和模型初始化07.1-数值稳定性和模型初始化-107.2-数值稳定性和模型初始化-207.3-实验14-房价预测案例-107.4-实验14-房价预测案例-207.5-实验14-房价预测案例-3 第八章:深度学习计算-模型构造08.1-模型构造-108.2-模型构造-208.3-模型构造-308.4-实验15-模型构造-108.5-实验15-模型构造-2 第九章:深度学习计算-模型参数的访问、初始化和共享09.1-模型参数的访问09.2-模型参数初始化和共享09.3-实验16-模型参数-109.4-实验16-模型参数-2 第十章:深度学习计算-自定义层与读取和储存10.1-不含模型参数的自定义层10.2-含模型参数的自定义层10.3-实验17-自定义层10.4-读取和储存10.5-GPU计算10.6-实验18-读取和储存  第十一章:卷积神经网络11.01-卷积神经网络11.02-卷积神经网络的组成层11.03-图像分类的局限性11.04-二维卷积层与卷积层11.05-卷积在图像中的直观作用11.06-实验19-二维卷积层11.07-填充与步幅11.08-卷积过程11.09-卷积层参数-111.10-卷积层参数-211.11-实验20-Pad和Stride11.12-多输入和输出通道11.13-实验21-多通道11.14-池化层11.15-实验22-池化层 第十二章:经典网络12.01-卷积神经网络12.02-实验23-LeNet模型12.03-深度卷积神经网络12.04-实验24-AlexNet模型12.05-使用重复元素的网络12.06-实验25-VGG模型12.07-网络中的网络12.08-实验26-NiN模型12.09-含并行连接的网络12.10-实验27-GoogLeNet模型12.11-批量归一化-112.12-批量归一化-212.13-实验28-批量归一化12.14-残差网络12.15-实验29-残差网络12.16-稠密连接网络12.17-实验30-稠密连接网络 第十三章:循环神经网络13.01-语言模型和计算13.02-n元语法13.03-RNN和RNNs13.04-标准RNN向前输出流程和语言模型应用13.05-vector-to-sequence结构13.06-实验31-语言模型数据集-113.07-实验31-语言模型数据集-213.08-实验32-从零实现循环神经网络-113.09-实验32-从零实现循环神经网络-213.10-实验32-从零实现循环神经网络-313.11-实验32-从零实现循环神经网络-413.12-实验33-简洁实现循环神经网络-113.13-实验33-简洁实现循环神经网络-2 第十四章:RNN进阶14.01-通过时间反向传播-114.02-通过时间反向传播-214.03-长短期记忆-114.04-长短期记忆-214.05-实验34-长短期记忆网络-114.06-实验34-长短期记忆网络-214.07-门控循环单元14.08-RNN扩展模型14.09-实验35-门控循环单元 第十五章:优化算法15.01-优化与深度学习15.02-局部最小值和鞍点15.03-提高深度学习的泛化能力15.04-实验36-小批量梯度下降-115.05-实验36-小批量梯度下降-215.06-动量法-115.07-动量法-215.08-实验37-动量法15.09-AdaGrad算法与特点15.10-实验38-AdaGrad算法15.11-RMSrop算法15.12-实验39-RMSProp算法15.13-AdaDelta算法15.14-实验40-AdaDelta算法15.15-Adam算法15.16-实验41-Adam算法15.17-不用二阶优化讲解与超参数 第十六章:计算机视觉16.01-图像增广与挑战16.02-翻转、裁剪、变化颜色与叠加16.03-实验42-图像增广-116.04-实验42-图像增广-216.05-微调16.06-迁移学习16.07-实验43-微调-116.08-实验43-微调-216.09-目标检测16.10-边界框16.11-实验44-边界框16.12-锚框与生成多个锚框16.13-交并比16.14-实验45-生成锚框-116.15-实验45-生成锚框-216.17-标注训练集的锚框-116.18-标注训练集的锚框-216.19-实验46-标注训练集的锚框-116.20-实验46-标注训练集的锚框-216.21-实验46-标注训练集的锚框-316.22-输出预测边界框16.23-实验47-输出预测边界框-116.24-实验47-输出预测边界框-216.25-多尺度目标检测16.26-实验48-多尺度目标检测16.27-目标检测算法分类16.28-SSD与模型设计16.29-预测层16.30-损失函数16.31-SSD预测16.32-实验49-目标检测数据集16.33-实验50-SSD目标检测-116.34-实验50-SSD目标检测-216.35-实验50-SSD目标检测-316.36-实验50-SSD目标检测-416.37-实验50-SSD目标检测-516.38-实验50-SSD目标检测-6 第十七章:自然语言处理17.01-词嵌入和词向量17.02-神经网络模型17.03-跳字模型17.04-训练跳字模型17.05-连续词袋模型17.06-负采样17.07-层序softmax17.08-子词嵌入17.09-Fasttext模型17.10-全局向量的词嵌入17.11-实验51-word2vec之数据预处理-117.12-实验51-word2vec之数据预处理-217.13-实验52-word2vec之负采样-117.14-实验52-word2vec之负采样-217.15-实验53-word2vec之模型构建-117.16-实验53-word2vec之模型构建-217.17-实验54-求近义词和类比词-117.18-实验54-求近义词和类比词-217.19-实验55-文本情感分类RNN-117.20-实验55-文本情感分类RNN-217.21-实验55-文本情感分类RNN-317.22-实验55-文本情感分类RNN-417.23-TextCNN17.24-TextCNN流程17.25-实验56-文本情感分类textCNN-117.26-实验56-文本情感分类textCNN-217.27-Seq2Seq的历史与网络架构17.28-Seq2Seq的应用与存在的问题17.29-Attention机制与Bucket机制17.30-实验57-机器翻译之模型构建-117.31-实验57-机器翻译之模型构建-217.32-实验57-机器翻译之模型构建-317.33-实验58-机器翻译之训练评估-117.34-实验58-机器翻译之训练评估-217.35-实验58-机器翻译之训练评估-3

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值