统计学 Logistic Regression (逻辑回归)

Logistic Regression是一种用于因变量为分类变量的回归模型,通过Logistic函数估算概率来研究分类变量与自变量间的关系。举例来说,它可以用来预测今天是否会下雨,或者松鼠是否携带瘟疫。在分析1000个消费者订阅杂志的数据时,我们发现年龄对订阅行为的影响,通过优化线性回归方程,得到概率预测模型,确保预测值在0到1之间,直观展示订阅的概率与年龄的关系。
摘要由CSDN通过智能技术生成

( Logistic Regression )逻辑回归: 是一种因变量是categorical variable的回归模型, 通过使用logistic function估算概率来测试categorical variable 和 自变量之间的关系. 通俗来说就是, 判断因变量发生成功的概率, 而不是和linear regression一样去预测平均值. 


例子: 我们想要知道 今天是否下雨, 可以通过给定几个输入参数然后判断; 松鼠是否带有瘟疫等等...


note: categorical variable是一种 值的数量 被固定或限制的变量. 比如可以抽象成 1 或者 0


我们通过一个例子来学习 什么是 Logistic Regression: 


背景: 我们收集了1000 个消费者数据, 我们这些消费者可能会去订阅某杂志.

目的: 现在我们想要知道 年龄对订阅或者不订阅杂志的影响. 


定义变量: 因变量 y 只有两个值 订阅 1 和不订阅 0. 自变量是 x 年龄.

定义regression equation: y = beta0 + beta1 * X + epsilon<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值