( Logistic Regression )逻辑回归: 是一种因变量是categorical variable的回归模型, 通过使用logistic function估算概率来测试categorical variable 和 自变量之间的关系. 通俗来说就是, 判断因变量发生成功的概率, 而不是和linear regression一样去预测平均值.
例子: 我们想要知道 今天是否下雨, 可以通过给定几个输入参数然后判断; 松鼠是否带有瘟疫等等...
note: categorical variable是一种 值的数量 被固定或限制的变量. 比如可以抽象成 1 或者 0
我们通过一个例子来学习 什么是 Logistic Regression:
背景: 我们收集了1000 个消费者数据, 我们这些消费者可能会去订阅某杂志.
目的: 现在我们想要知道 年龄对订阅或者不订阅杂志的影响.
定义变量: 因变量 y 只有两个值 订阅 1 和不订阅 0. 自变量是 x 年龄.
定义regression equation: y = beta0 + beta1 * X + epsilon<