python学习[4]_利用numpy做一些距离的计算

本文介绍了Python中利用numpy库进行多种距离计算的方法,包括汉明距离、欧式距离、曼哈顿距离和切比雪夫距离的概念及代码示例。在数据处理和聚类算法中,这些距离度量经常被用来衡量数据点之间的相似性。
摘要由CSDN通过智能技术生成

利用numpy做一些距离的计算

  • 1、汉明距离的概念:汉明距离是使用在数据传输差错控制编码里面的,汉明距离是一个概念,它表示两个(相同长度)字对应位不同的数量,我们以d(x,y)表示两个字x,y之间的汉明距离。对两个字符串进行异或运算,并统计结果为1的个数,那么这个数就是汉明距离。

  • 2、代码示例:

#-*- coding:utf-8 -*-
from numpy import *

#汉明距离:字符串不同的个数
matV = mat([[1,1,0,1,0,1,0,0,1],[0,1,1,0,0,0,1,1,1]])
smstr = nonzero(matV[0]-matV[1])
print list(smstr)
print shape(smstr[0])
  • 3、欧式距离概念:欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。

  • 4、曼哈顿距离概念:曼

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值