- 博客(110)
- 收藏
- 关注
原创 caj双击没反应的解决方法
电脑上之前装过caj的软件,后来没怎么看知网里的论文,就丢一边去了。最近要开始研究知网的论文了,重新下了个安装软件,装一半进度条就停在那里,之后,反复折腾,直接关进程,重启,再装,不行,重启再卸。折腾几轮都没用。最后是安装在最后一个节点,卡在那里了。然后重启,使用控制面板里的卸载工具修复。修复好后依旧双击没反应,进程里却是打开状态。在网上搜罗了几种方法,使用这个方法成功解决。谢谢!贴子...
2019-06-18 11:32:55 9812 3
原创 latex 编译新的tex时,缺少sty文件时的安装方法
找到一个双栏的tex文件,一编译,报缺少若干sty文件。使用在线安装没有用,只能手动下载安装包,生成相对应的sty文件,再放入latex安装目录,然后refresh。如 缺少forloop.sty1.在https://www.ctan.org/tex-archive/macros/latex/contrib/页面下搜索缺少的安装包名,找到后,下载到本地。一般是一个zip文件,然后解压,里面是i...
2018-12-07 17:00:24 29314 11
转载 iccv 2017-人体姿态估计 Learning Feature Pyramids for Human Pose Estimation
读书笔记来自于https://mp.weixin.qq.com/s/FQEK8slP7dWosiTlElsnjALearning Feature Pyramids for Human Pose Estimation 是发表在 ICCV 2017 的一篇有关人体姿态估计的论文,提出利用特征金字塔来进行人体姿势预测。作者是 Wei Yang,香港中文大学博士生。改进思路:...
2018-10-17 14:53:04 617
转载 对象检测-eccv2018-Receptive Field Block Net for Accurate and Fast Object Detection
Code is available at https://github.com/ruinmessi/RFBNet.
2018-09-26 22:52:18 995
转载 PFDet: 2nd Place Solution to Open Images Challenge 2018 Object Detection Track
We use a two-stage Faster R-CNN style object detection framework [12] and leverage an SE-ResNeXt or SENet [4] model as the backbone feature extractor. To increase the global context information in t...
2018-09-18 16:35:57 754
转载 百度视觉团队斩获 ECCV Google AI 目标检测竞赛冠军,获奖方案全解读 | ECCV 2018
https://mp.weixin.qq.com/s/cP2kM553XyRsUZ5xJ8kAZA 以下为百度视觉团队技术方案解读:存在挑战与传统的检测数据集合相比,该赛事除了数据规模大、更真实之外,还存在一系列的挑战。具体来说,主要集中在以下三个方面: 数据分布不均衡:最少的类别框选只有 14 个,而最多的类别框选超过了 140w,数据分布严重不均衡。 类别框数量分...
2018-09-18 16:27:53 1243
转载 Deep Feature Pyramid Reconfiguration for Object Detection
https://www.jiqizhixin.com/articles/2018-08-03-19面向目标检测任务的深度特征金字塔再组合Deep Feature Pyramid Reconfiguration for Object Detection该论文由腾讯AI Lab与清华大学合作完成。目前最好的目标检测器大多通过特征金字塔来学习多尺度表示从而取得更高的检测精度。然而,当前特征金...
2018-09-07 19:56:28 2197
原创 object detection
Dual Refinement Network for Single-Shot Object DetectionPooling Pyramid Network for Object DetectionCornerNet: Detecting Objects as Paired Keypoints(eccv2018)Tiny-DSOD: Lightweight Object Detect...
2018-09-05 19:31:29 367
转载 ECCV2018-Object Detection
http://openaccess.thecvf.com/ECCV2018_search.py 1.License Plate Detection and Recognition in Unconstrained Scenarios [pdf] 2.Bidirectional Feature Pyramid Network with Recurrent Attention Residu...
2018-09-05 10:50:34 2661
转载 L2 normalization
https://blog.csdn.net/zqjackking/article/details/69938901(SSD中有L2的实现)https://github.com/happynear/NormFacehttps://github.com/happynear/caffe-windows/blob/ms/src/caffe/proto/caffe.protomessage Normaliz...
2018-04-14 17:25:37 2155
转载 Instance-aware Semantic Segmentation via Multi-task Network Cascades
Instance-aware Semantic Segmentation via Multi-task Network CascadesJifeng Dai, Kaiming He, and Jian SunIEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 (Oral)arXiv https://arx...
2018-03-26 11:17:54 373 1
转载 CRAFT
CRAFTCRAFT Objects from Imagesintro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNNproject page: http://byangderek.github.io/projects/craft.htmlarxiv: https://a...
2018-03-26 11:00:11 948
转载 voc2012数据集的处理
摘自《yolo:实时目标检测》http://blog.csdn.net/leadai/article/details/78662039首先预备好数据并生成元数据给DarkNet。这里我们使用VOC2012的数据(需要注册一个账号才能下载),下载2012test.rar文件(http://host.robots.ox.ac.uk:8080/eval/downloads
2018-01-23 10:47:35 6762
转载 nms的各种变体
转自:https://zhuanlan.zhihu.com/p/28129034Soft-NMS:Improving Object Detection With One Line of Code不同于在NMS中采用单一阈值,对与最大得分检测结果M超过阈值的结果进行抑制,其主要考虑Soft-NMS,对所有目标的检测得分以相应overlap with M的连续函数进行衰减。ConvNMS:A Conv
2018-01-19 17:44:34 4147
转载 flexible nms
转自:http://www.sohu.com/a/201486319_99901730对soft nms的改进,得到:flexible-nms第二名:Dmytro Poplavskiy 年龄:38岁居住地:澳大利亚布里斯班教育:无线电物理与电子学硕士学位自我介绍:我是一名最近对机器学习感兴趣的软件工程师。本质上我的源代码组成如下:1)基于Faster-RCNN的Deformable ConvNet
2018-01-19 17:18:12 413
转载 多阶段细化分割-iccv2017-A Stagewise Refinement Model for Detecting Salient Objects in Images
读论文《A Stagewise Refinement Model for Detecting Salient Objects in Images》,里面提到了PPM,查PPM的实现,找到论文《Pyramid Scene Parsing Network》(CVPR2018),基本上与这篇论文一致,只是最后的concat不一样。PSPnet论文有caffe实
2017-11-30 18:10:21 1602
转载 ssd中test the detection speed
https://github.com/weiliu89/caffe/issues/332P.S. For the detection speed evaluation, I basically add timing function in your "ssd_detect.ipynb" example:需要做一个循环,对几百+的图片进行一个检测,然后计算时间。import
2017-11-22 19:49:28 604
转载 PVANet中的solver.prototxt中的plateau实现
train_net: "models/pvanet/example_train/train.prototxt"base_lr: 0.001lr_policy: "plateau"gamma: 0.1stepsize: 50000display: 20average_loss: 100momentum: 0.9weight_decay: 0.0002
2017-11-16 17:21:52 685
转载 PVANet中的改进后的CReLU的caffe实现
https://github.com/sanghoon/pva-faster-rcnn/blob/master/models/pvanet/pva9.1/faster_rcnn_train_test_21cls.ptlayer { name: "conv1_1/conv" type: "Convolution" bottom: "data" top: "conv1_1/
2017-11-16 15:40:38 1557
转载 paperweekly
Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification1. 文章提出了一种新的度量学习方法 Margin sample mining loss - MSML。Triplet loss 是一种非常常用的度量学习方法,Quadruplet loss 和 Triplet ha
2017-11-06 16:45:45 763
转载 paperweekly-迁移学习
来自微信公众号:paperweekly所谓迁移学习,就是从一个或多个源任务(source task)中抽取知识和经验,然后将其应用于一个有相关性的目标领域(target domain)。1.Domain adaptation via transfer component analysis迁移学习领域公认的经典工作,作者团队来自香港科技大学 Qiang Yang 教授
2017-11-02 14:44:37 2313
转载 paperweekly
Learning to Compose Domain-Specific Transformations for Data Augmentation提出了一种不需要特定领域知识的数据扩增的方法,能够生成大量标记样本,并且不损失类别信息。按文中所说,确实能够提升一定的分类模型的精度。https://github.com/HazyResearch/tanda
2017-10-30 15:47:39 376
转载 Pingping Zhang+语义对象检测
http://ice.dlut.edu.cn/lu/publications.html一个非常牛的实验室,四篇iccv 2017,膜拜!Pingping Zhang一人两篇!!!Pingping Zhang, Dong Wang, Huchuan Lu,Hongyu Wang, Xiang Ruan, Amulet: Aggregating Multi-Level Convol
2017-10-19 09:22:59 1946
转载 GAN
DCGAN CNN+GANWGANLSGANhttps://github.com/xudonmao/LSGAN稳定性WGAN最好,但生成图片相对模糊生成图像细节上LSGAN>DCGAN>WGAN稳定性上 WGAN>LSGAN>DCGAN
2017-10-18 21:09:02 822
原创 ron 实现
1.报错 (GPU报错)[idc@slave1 RON]$ ./test_voc07.shTraceback (most recent call last): File "./tools/test_net.py", line 12, in from fast_rcnn.test import test_net File "/home/idc/deep/gjj/RON
2017-10-18 17:44:22 1213 1
转载 AAAI 2017
1. 最佳论文:最佳论文颁发给了斯坦福大学的Russell Steward以及其导师Stefano Drmon撰写的论文《Label-Free Supervision of Neural Networks with Physics and Domain Knowledge》。该文章从已知的关系(如物理定律)入手,通过输出必须满足物理定律的约束来训练学习。在许多机器学习应用中,带标签的数
2017-10-13 10:15:59 1151
转载 几篇论文
来自微信公众号paperweekly,里面集中在文本方向。1.Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks这是一篇相当经典的 Siamese 网络模型,类似架构可以通过改变左右两边的网络结构而适用于各种 task。如果把右侧网络输入换成 Label,则可以用于实现http://
2017-09-29 18:56:21 501
转载 变形卷积核、可分离卷积?卷积神经网络中十大拍案叫绝的操作。
https://zhuanlan.zhihu.com/p/28749411知乎里的论文,将最近几个关于卷积的变形操作讲得非常透彻Group convolutionBottleneckDepthWise操作--Xception分组卷积能否对通道进行随机分组?-- ShuffleNet通道间的特征都是平等的吗? -- SEnetDilat
2017-09-21 15:33:37 817
转载 svhn的local contrast normalization处理
出处来自:论文:Convolutional Neural Networks Applied toHouse Numbers Digit Classificationhttps://arxiv.org/pdf/1204.3968.pdfSamples are pre-processed with a local contrast normalization(with a 7x7
2017-09-19 15:52:14 1435
转载 读书笔记PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
转自:http://www.cnblogs.com/xueyuxiaolang/p/5959442.html传送门: 论文:https://www.arxiv.org/pdf/1608.08021v3.pdf code:https://github.com/sanghoon/pva-faster-rcnn中心:
2017-09-19 10:09:40 451
转载 windows下python 缺少cv2
找人脸检测代码,找到博文地址:http://blog.csdn.net/chenriwei2/article/details/49500687代码地址:https://github.com/RiweiChen/FaceTools下载下来在电脑上执行,设定好参数后,报缺少cv2模块。网上下载来cv2.pyd放入python安装路径,D:\Python27\Lib\site-pac
2017-07-03 16:27:20 5954
转载 svhn数据集处理
https://github.com/hangyao/street_view_house_numbers 这个是SVHN在tensorflow上的实现,是ipython版本的使用上面链接里的方法,在ipython中改成三个集合,分别是trainset,validset和testset然后再保存成mat格式,再用之前找到的mat转lmdb的代码执行,就ok了。里面有两个需要注意的
2017-06-28 11:11:40 6192
原创 SVHN 数据集
一直都是直接把test集直接作为测试集的,结果今天才发现错了。是 training data without any data augmentation, and a validation set with 6,000 images is split from the training set. 6000的来源是: select 400 samples per class from the
2017-06-23 11:29:52 11940
原创 latex 中加入参考文献方法
1.·先在百度学术上找到要引用的论文,然后找到BibTeX 格式,点击得到该引用格式信息,复制下来,@inproceedings{Long2015Fully, title={Fully convolutional networks for semantic segmentation}, author={Long, Jonathan and Shelhamer, Evan and D
2017-06-13 20:01:26 10367
转载 Ctrl+C 后能同时保存snapshot和日志的方法
来自https://www.zhihu.com/question/55670949GLOG_log_dir=/path/to/logdir $CAFFE_ROOT/bin/caffe.bin train —solver=/path/to/solver.prototxt
2017-06-07 15:14:51 466
转载 pytorch 入门
pytorch中只需要写出前向推导公式,系统会自动写出反向推导,和caffe不同,类似pytorch的还有Tensorflow,Theano1. resnet在pytorch中的实现https://github.com/ruotianluo/pytorch-resnet2. DiracNet在pytorch中的实现https://github.com/szagoruyk
2017-06-05 16:07:16 1306
转载 语义分割-Pixel Deconvolutional Networks
反卷积操作会带来所谓的棋盘问题,这是因为在输出的特征谱图上相邻像素点之间没有直接的关系。为解决这一问题,提出了一个像素反卷积层(PixelDCL)来建立直接关系。在U-Net上替换Deconvolution layer,caffe实现U-Net 论文 U-net: Convolutional networks for biomedical image segmentation.U
2017-05-23 16:11:40 1195
转载 imagenet 数据集准备
http://blog.csdn.net/drdeep/article/details/508359741.数据集折腾需要将训练集解压,ILSVRC2012_img_train.tar解压后是1000个tar文件,每个tar文件表示1000个分类中的一个类。需要对这1000个tar文件再次解压。在train目录下执行unzip.sh文件,最后得到1000个文件夹。每个文件夹中是
2017-05-22 20:33:50 21638
转载 特征图谱提取
http://www.cnblogs.com/louyihang-loves-baiyan/p/5078746.html用上面的方法,在最关键的一句上报错。不知道为什么? File "extractFeature.py", line 53, in extractFeature f.write(struct.pack('f', net.blobs['Convolution1'
2017-04-25 20:58:14 1856
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人