win7 64位 安装tensorflow GPU版本

    近日终于在win7上安装成功tensorflow GPU版本,并测试成功!这里将其中遇到的种种问题和解决方法做下记录,以供大家相互交流!

    电脑配置:16G内存;处理器: AMD Athlon(tm)x4 870K ,3.9GHz;GTX1050显卡;win7 64bit系统

    平台搭建:python3.5.2(64bit)+cuda8.1+cuDNN5.1+tensorflow 0.12.0rc0.0(想升级以后可以随便升级)

    安装过程:

     第一步:安装python3.5.2

                 访问https://www.python.org/downloads/ 找到相应的版本,下载安装就可以了,可以选择自动添加path,也可以手动添加。python安装不多赘述,百度 到处都是。安装完成后打开cmd,输入python,查看是否安装成功,成功之后进入第二步。

    第二步:安装cuda8.1

                访问https://developer.nvidia.com/cuda-downloads,同样找到相应的版本下载即可,也很简单,下载之后执行.exe文件,默认步骤安装就可以。安装完 成后,打开cmd,输入:nvcc -V,即可查看。

    第三步:安装cuDNN:

            访问https://developer.nvidia.com/cudnn(要注册Nvidia用户,并加入CuDNN开发组,填若干问卷就可以下载了)选择下载版本时要注意和Cuda版本匹 配。下载完成后,解压,会看bin,lib,include三个文件,然后分别将这三个文件中的.dll文件复制到 C:\ProgramFiles\NVIDIA GPUComputingToolkit\CUDA\v8.0对应的文件夹内。                 

    第四步,安装tensorflow:

     在浏览器中打开https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-0.12.0rc0-cp35-cp35m-win_amd64.whl,下载tensorflow安装包到d盘(随便什么位置都行,只要后面对应好安装路径就可以),然后打开python安装目录下的Script文件将,将pip.exe拖入到cmd中,然后输入 install d:\tensorflow_gpu-0.12.0rc0-cp35-cp35m-win_amd64.whl,回车进行安装。


    到这里已经安装成功了,但是运行简单的程序可以,但是运行需要GPU加速的程序时就会出现问题,这个时候不要害怕,装个VS2015,问题就解决了。这个时候就可以测试了,可以去githun下个mnist的程序跑一下,会发现又有问题出现了,不要着急,可能是因为GPU内存的问题,需要更改batch,可以访问http://stackoverflow.com/questions/39076388/tensorflow-deep-mnist-resource-exhausted-oom-when-allocating-tensor-with-shape,查看修改代码就可以了。最后说明一下,我使用的是pycharm,各种包、模块装起来都比较方便。

  


   大家有问题随时欢迎交流。

### 回答1: 要在Win11上安装TensorFlow GPU版本,您需要遵循以下步骤: 1. 安装CUDA Toolkit:访问NVIDIA官网下载并安装最新版本的CUDA Toolkit。 2. 安装cuDNN:访问NVIDIA官网下载并安装与您的CUDA版本兼容的cuDNN。 3. 安装Anaconda:访问Anaconda官网下载并安装最新版本的Anaconda。 4. 创建虚拟环境:在Anaconda Prompt中使用以下命令创建一个新的虚拟环境: conda create --name tf-gpu python=3.8 5. 激活虚拟环境:使用以下命令激活虚拟环境: conda activate tf-gpu 6. 安装TensorFlow GPU版本:使用以下命令在虚拟环境中安装TensorFlow GPU版本: pip install tensorflow-gpu 7. 验证安装:使用以下代码验证TensorFlow GPU版本是否已正确安装: import tensorflow as tf print(tf.__version__) print(tf.test.is_gpu_available()) 如果输出的版本号为TensorFlow GPU版本,并且is_gpu_available()返回True,则表示安装成功。 希望这些步骤能帮助您在Win11上安装TensorFlow GPU版本。 ### 回答2: 要在Windows11上安装TensorFlow-GPU版本,需要遵循以下步骤: 1. 安装CUDA Toolkit 在安装TensorFlow-GPU之前,需要先安装CUDA Toolkit。CUDA是NVIDIA的并行计算平台和编程模型,它包含用于在GPU上执行数学计算的并行计算库和工具。TensorFlow-GPU需要与CUDA一起使用,以获得GPU加速。 在安装CUDA Toolkit之前,需要检查您的GPU是否支持CUDA,您可以在NVIDIA官网上找到兼容性列表。然后,从NVIDIA官网下载适合您的操作系统的CUDA版本。 2. 安装cuDNN cuDNN是CUDA深度神经网络库,它提供了实现深度学习任务所需的GPU加速算法。TensorFlow-GPU需要cuDNN,以获得更快的性能。您可以在NVIDIA官方网站上下载cuDNN。 3. 安装Anaconda Anaconda是一个用于Python数据科学的开源分发版,它包含了大量的Python库和工具。将Anaconda安装Windows11上,可以方便地管理所需的Python环境和库。 从Anaconda官网下载适合您的操作系统的Anaconda版本安装后打开Anaconda Prompt。 4. 创建和激活conda环境 您需要在Anaconda中创建一个虚拟环境来安装TensorFlow-GPU。此外,您可以使用以下命令,激活conda环境: conda create -n tensorflow-gpu python=3.6 activate tensorflow-gpu 5. 安装TensorFlow-GPU 在激活conda环境后,您可以使用以下命令,从pip安装TensorFlow-GPU: pip install tensorflow-gpu 或者,如果您要安装特定版本TensorFlow-GPU,例如2.0.0,请使用以下命令: pip install tensorflow-gpu==2.0.0 6. 测试TensorFlow-GPU 要测试安装TensorFlow-GPU是否正常工作,请使用以下代码,检查其版本和能否识别GPU: import tensorflow as tf tf.test.is_gpu_available() 如果输出为True,则表示您已成功安装TensorFlow-GPU,并可以在GPU上运行。 总之,安装TensorFlow-GPU版本需要的步骤包括安装CUDA Toolkit、安装cuDNN、安装Anaconda、创建和激活conda环境、最后安装TensorFlow-GPU,最后测试安装。如上操作,需要有一定的计算机基础,操作时需谨慎,确保操作十分准确,否则可能会出现一些不必要的问题。 ### 回答3: 安装Win11 tensorflow-gpu版本的方法如下: 1. 安装CUDA和cuDNN: 因为tensorflow-gpu需要依赖CUDA和cuDNN,所以第一步需要先安装CUDA和cuDNN,推荐安装最新版本(2021年5月2日的最新版本是CUDA 11.3和cuDNN 8.2)。 2. 创建虚拟环境: 在Anaconda Navigator中打开Anaconda Prompt,运行以下命令创建虚拟环境: conda create -n tensorflow-gpu python=3.8 3. 激活虚拟环境: 运行以下命令激活虚拟环境: conda activate tensorflow-gpu 4. 安装tensorflow-gpu: 运行以下命令安装tensorflow-gpu: pip install tensorflow-gpu 5. 验证安装: 运行以下命令验证tensorflow-gpu是否成功安装: python import tensorflow as tf print(tf.__version__) 如果输出的版本号是tensorflow-gpu版本号,则安装成功。 小提示:安装过程中可能会遇到各种问题,比如CUDA版本不匹配、缺少某些库等等,如果不确定如何解决,可以在tensorflow的官网或者GitHub仓库中查看相关的文档或者向tensorflow社区求助。 总结: 以上就是在Win11中安装tensorflow-gpu的方法,希望对大家有所帮助。安装过程需要格外小心,尤其是对于初学者而言,切勿心急冒进。如果遇到问题时,可以参考相关文档或咨询专业人士进行处理。加油!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值