染色法判定二分图(c++)个人记录向

 二分图的概念就是两一个图分为两个集合,每个集合内部不能互相连接,但是两个集合可以互相连接。两个集合假设我们分为1号集合以及2号集合,初始的时候任何点都没有染色(染色其实就是染1号点或者是2号)我们可以随便找一个点染成1号那么和它相邻(连接)的点就只能是2号,如此染色下去,我们采用dfs进去染色,若是碰到已经有染色了的点,就判断一下已经染的色是不是和将要染的色矛盾,如果矛盾就代表存在奇数环,代表不存在二分图。

而且可能因为有不连通的点所有我们要遍历所有的点都用dfs进行染色判断

#include<iostream>
#include<cstring>
using namespace std;
const int N=1e5+10,M=2*N;
int h[N],e[M],ne[M],idx;
int color[N];
int n,m;
void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
bool dfs(int u,int c)
{
    color[u]=c;//将u号点染色
    for(int i=h[u];i!=-1;i=ne[i])//将它临接的点染色然后dfs下去,若dfs返回的是false就代表dfs下出问题了
    {
        int j=e[i];
        if(!color[j])
        {
            if(!dfs(j,3-c))return false;
        }
        else//若已经染色过了,并且染的色和找到它的那个点的颜色一样那么就不是二分图返回false
        {
            if(color[j]==c)return false;
        }
    }
    return true;
}
int main()
{
    memset(h,-1,sizeof h);
    cin>>n>>m;
    while(m--)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
        add(b,a);
    }
    bool flag=false;
    for(int i=1;i<=n;i++)//遍历所有的点
    {
        if(!color[i])
        {
            if(!dfs(i,1))
            {
                flag=true;
                break;
            }
        }
    }
    if(flag)cout<<"No"<<endl;
    else cout<<"Yes"<<endl;
}

### 二分图染色法的原理解释 二分图是指能够将所有顶点划分为两个互不相交的子集 \( U \) 和 \( V \),使得每条边的一个端点属于 \( U \),另一个端点属于 \( V \)[^3]。为了验证一个给定的无向图是否为二分图,可以通过 **染色法** 实现。 #### 染色法的核心思想 染色法通过为图中的每个节点分配两种不同颜色(通常称为红色和蓝色)来检测是否存在冲突。具体来说: - 初始状态下,所有节点均未被染色。 - 随机选取一个未染色的节点并赋予其一种颜色(例如红色)[^1]。 - 对于已染色的节点,尝试为其所有邻居节点赋上与其相反的颜色(例如,如果当前节点是红色,则邻居应为蓝色)[^2]。 - 如果在上述过程中发现某个节点已经被染上了与预期不符的颜色,则表明该图无法构成二分图。 #### 算法实现细节 染色过程可以借助深度优先搜索 (DFS) 或广度优先搜索 (BFS) 完成。以下是基于 DFS 的伪代码示例: ```python def is_bipartite(graph, node, colors): stack = [(node, 0)] # 起始节点及其初始颜色(假设为0) while stack: current_node, color = stack.pop() if colors[current_node] != -1: # 当前节点已被访问过 if colors[current_node] != color: # 发生颜色冲突 return False continue colors[current_node] = color # 给当前节点染色 for neighbor in graph[current_node]: stack.append((neighbor, 1 - color)) # 将邻居节点压入栈,并准备染反色 return True ``` 在此基础上,对于整个图而言,需逐一处理尚未染色的部分连通分支,直到完成全部节点的检查为止。 #### 时间复杂度分析 由于每次仅需遍历一次图的所有边以及顶点即可完成判断操作,因此总体时间复杂度为 \( O(V + E) \),其中 \( V \) 表示顶点数量而 \( E \) 是边的数量。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值