hdu 6476 自动驾驶系统 · bfs

本文详细解析了在一个二维迷宫中寻找从起点到任意点的最短路径算法。通过使用广度优先搜索(BFS)算法,文章展示了如何在每次更新障碍物后重新计算最短路径,以应对动态变化的迷宫环境。此方法避免了在每次查询时重复计算路径长度,从而显著提高了算法效率。
摘要由CSDN通过智能技术生成

题解

题目保证不会重置障碍,说明 * x y的询问最多出现n*m-1次,
每次执行第二种操作就重新统计到达每个格子的最少距离,可以避免每当查询才统计答案而出现的TLE


在这里插入图片描述


#include <bits/stdc++.h>
using namespace std;
typedef  pair<int,int> pii;
const int N=50+1;
const int INF=0x3f3f3f3f;
bool vis[N][N];
int d[N][N];
int a[N][N];
int n,m,k,dx,dy,x,y;
int dir[4][2]={1,0,0,1,0,-1,-1,0};
queue<pii>q;
void bfs(){
    memset(vis, 0, sizeof(vis));
    memset(d, INF, sizeof(d));
    while(!q.empty())q.pop();

    q.push({1,1});

    d[1][1]=0;
    while(!q.empty()){
        pii u=q.front();
        q.pop();

        if(vis[u.first][u.second])continue;//诶 老是忘了这里 MLE警告
        vis[u.first][u.second]=true;

        for (int i = 0; i < 4; ++i) {
            dx=u.first+dir[i][0];
            dy=u.second+dir[i][1];

            if(dx>0&&dx<=n && dy>0 && dy<=m){
                if(a[dx][dy]!=1&& !vis[dx][dy]){
                    d[dx][dy]=min(d[dx][dy],d[u.first][u.second]+1);
                    q.push({dx,dy});
                }
            }
        }
    }
}

char s[2];
int main(){
    ios::sync_with_stdio(0);
    int T;
    cin>>T;
    for (int cs = 1; cs <= T; ++cs) {
        memset(a, 0, sizeof(a));

        cin>>n>>m>>k;
        bfs();

        for (int i = 1; i <= k; ++i) {
            cin>>s>>x>>y;
            if(s[0]=='?'){
                if(d[x][y]==INF)cout <<"-1" << endl;
                else cout <<d[x][y]<< endl;
            }else{
                a[x][y]=1;
                bfs();
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值