2016ACM/ICPC亚洲区沈阳站-重现赛(感谢东北大学)

13 篇文章 0 订阅
本文介绍了矩阵快速幂算法在递推序列问题中的应用,以及马尔科夫链在猜骰子游戏概率计算中的使用。通过矩阵快速幂解决斐波那契数列的高效计算,利用马尔科夫链建立状态转移模型,分析游戏结束的概率。这些技术在处理复杂计算和概率问题时展现出强大的能力。
摘要由CSDN通过智能技术生成


题目链接

2016ACM/ICPC亚洲区沈阳站-重现赛(感谢东北大学)


A Thickest Burger

#include <bits/stdc++.h>
using namespace std;
int A, B;

void solve() {
    cin >> A >> B;
    cout << max(A * 2 + B, A + B * 2) << endl;
}

void Run() {
    int T;
    cin >> T;
    for (int cs = 1; cs <= T; cs++) {
        solve();
    }
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);

    Run();

    return 0;
}

B Relative atomic mass

#include <bits/stdc++.h>
using namespace std;
int n;
string s;

void solve() {
    cin >> s;
    n = s.length();
    int res = 0;
    for (int i = 0; i < n; i++) {
        if (s[i] == 'C') {
            res += 12;
        } else if (s[i] == 'H') {
            res += 1;
        } else if (s[i] == 'O') {
            res += 16;
        }
    }
    cout << res << endl;
}

void Run() {
    int T;
    cin >> T;
    for (int cs = 1; cs <= T; cs++) {
        solve();
    }
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);

    Run();

    return 0;
}

C Recursive sequence · 矩阵快速幂

https://blog.csdn.net/red_red_red/article/details/90208713

( f n f n − 1 ( n + 1 ) 4 ( n + 1 ) 3 ( n + 1 ) 2 n + 1 1 ) = ( 1 2 1 1 1 4 6 4 1 1 3 3 1 1 2 1 1 1 1 ) ( f n − 1 f n − 2 n 4 n 3 n 2 n 1 ) \begin{pmatrix}f_n\\f_{n-1}\\(n+1)^4\\(n+1)^3\\(n+1)^2\\n+1\\1\end{pmatrix}= \begin{pmatrix}1&2& 1& & & & \\ 1&& & & && \\ && 1& 4& 6& 4& 1\\ && & 1& 3&3& 1\\&& & & 1& 2& 1\\ &&& & & 1& 1\\ && & & & & 1\end{pmatrix} \begin{pmatrix}f_{n-1}\\f_{n-2}\\n^4\\n^3\\n^2\\n\\1\end{pmatrix} fnfn1(n+1)4(n+1)3(n+1)2n+11=1121141631432111111fn1fn2n4n3n2n1

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll a, b;
namespace Matrix {//矩阵快速幂板子
    const int maxn = 7;
    __int128 mod = 2147493647;

    struct Mat {

        __int128 mat[maxn][maxn];

        void clear() {
            memset(mat, 0, sizeof(mat));
        }

        //初始化成单位矩阵
        void initE() {
            clear();
            for (int i = 0; i < maxn; ++i) {//单位矩阵
                mat[i][i] = 1;
            }
        }

        Mat operator*(const Mat a) const {
            Mat b;
            b.clear();

            for (int i = 0; i < maxn; ++i) {
                for (int j = 0; j < maxn; ++j) {
                    for (int k = 0; k < maxn; ++k) {
                        b.mat[i][j] = (b.mat[i][j] + (mat[i][k] * a.mat[k][j]) % mod + mod) % mod;
                    }
                }
            }
            return b;
        }
    };

    Mat pow(Mat m, ll k) {
        Mat res;
        res.initE();

        while (k) {
            if (k & 1) res = res * m;
            k >>= 1;
            m = m * m;
        }
        return res;
    }

    Mat E;//转移矩阵

    Mat f;//最开始的 S1 f1 f0
    void init() {
        E.clear();
        E = {
                1, 2, 1, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 0,
                0, 0, 1, 4, 6, 4, 1,
                0, 0, 0, 1, 3, 3, 1,
                0, 0, 0, 0, 1, 2, 1,
                0, 0, 0, 0, 0, 1, 1,
                0, 0, 0, 0, 0, 0, 1
        };
        f = {
                b, 0, 0, 0, 0, 0, 0,
                a, 0, 0, 0, 0, 0, 0,
                81, 0, 0, 0, 0, 0, 0,
                27, 0, 0, 0, 0, 0, 0,
                9, 0, 0, 0, 0, 0, 0,
                3, 0, 0, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 0,
        };
    }


}
using namespace Matrix;

void solve() {
    cin >> n >> a >> b;
    if (n == 1) {
        cout << a << endl;
    } else if (n == 2) {
        cout << b << endl;
    } else {
        init();
        cout << (ll)((pow(E, n - 2) * f).mat[0][0]) << endl;
    }
}

void Run() {
    int T;
    cin >> T;
    for (int cs = 1; cs <= T; cs++) {
        solve();
    }
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);

    Run();

    return 0;
}

D Winning an Auction

E Counting Cliques · 暴力

#include <bits/stdc++.h>
using namespace std;
vector<int> e[105];
int n, m, s;
int mp[105][105], vis[105];
int Stack[105], top = 0;

bool check(int u) {
    for (int i = 1; i <= top; i++) {
        if (i == u) continue;
        if (!mp[Stack[i]][u]) return false;
    }
    return true;
}

int res = 0;

void calc(int u) {
    Stack[++top] = u;
    if (top == s) {
        res++;
    }
    if (top < s) {
        for (int v:e[u]) {
            if (check(v)) {
                calc(v);
            }
        }
    }
    top--;
}


void solve() {
    cin >> n >> m >> s;
    for (int i = 1, u, v; i <= m; i++) {
        cin >> u >> v;
        if (u > v)swap(u, v);
        if (!mp[u][v]) {
            mp[u][v] = 1;
            e[u].push_back(v);
        }
    }
    for (int i = 1; i <= n; i++) {
        sort(e[i].begin(), e[i].end());
    }

    for (int i = 1; i <= n; i++) {
        calc(i);
    }
    cout << res << endl;

    // init
    res = 0;
    for (int i = 1; i <= n; i++) {
        e[i].clear();
        vis[i] = 0;
        for (int j = i + 1; j <= n; j++) {
            mp[i][j] = 0;
        }
    }
}

void Run() {
    int T;
    cin >> T;
    for (int cs = 1; cs <= T; cs++) {
        solve();
    }
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);

    Run();

    return 0;
}

F Similar Rotations
G Do not pour out

H Guessing the Dice Roll · AC自动机+矩阵/马尔科夫链

https://www.cnblogs.com/dirge/p/6017703.html
初学马尔科夫链 - https://zhuanlan.zhihu.com/p/52376035

假设存在两个猜想 . . . 123 ...123 ...123 234... 234... 234...
若要让第二个猜想成立,第一个猜想就必须不成立,
如果当前局势使得第一个猜想成立,那么当 3 3 3出现的那一刻,游戏结束,

这种概率题永远优先猜马尔科夫链,可惜转移矩阵不会写,万万没想到居然是借助ac自动机…

通过AC自动机得到马尔科夫链的有向图,每个节点都视为一个状态,

大致写写想想可以知道:肯定存在一个初始状态0,作为游戏的开始状态,其状态概率必定为1

如果当前状态为某一个猜想的结尾,则当前状态对于其他状态的转移概率均为0

如果当前状态非结尾,则其概率为 ∑ \sum 前一个状态的概率 × \times × 概率转移矩阵里 A A A(前一个状态->当前状态)

x n x_n xn为每个状态的概率, V k V^k Vk 为第k步的状态向量
V k = ( x 0 x 1 . . . x n ) V^k=\begin{pmatrix}x_0\\x_1\\...\\x_n\end{pmatrix} Vk=x0x1...xn
则初始状态 V 0 V^0 V0
V 0 = ( 1 0 . . . 0 ) V^0=\begin{pmatrix}1\\0\\...\\0\end{pmatrix} V0=10...0
马尔科夫链的转移只和前一个状态有关,与之前的之前状态无关,每次一步转移均有
V n + 1 = A × V n V^{n+1}=A\times V^n Vn+1=A×Vn
就是这个东西👇(借一下博客里的图)
在这里插入图片描述

然后就是矩阵乘啊乘啊乘,因为转移矩阵最后会收敛,所以只要一直等到矩阵稳定就行…看起来好像是这样,可惜这种方法只会使误差越来越大…

真正关键是这个公式:
x = ( ∑ i = 1 ∞ A i ) b x=(\sum_{i=1}^{∞}A^i)b x=(i=1Ai)b
左边矩阵 x x x为最终状态, A A A为转移矩阵,右边矩阵 b b b为初始状态

不好意思,我学的时候学到的公式是第一个,这个着实不会…

有没有大神能讲一下,为啥公式可以写成这样…

反正就强记这个叫做矩阵函数的东西,百度说这个函数是收敛的
∑ i = 1 ∞ A i = ( E − A ) − 1 \sum_{i=1}^{∞}A^i=(E-A)^{-1} i=1Ai=(EA)1

所以就化成 x = ( E − A ) − 1 b x=(E-A)^{-1}b x=(EA)1b ( E − A ) x = b (E-A)x=b (EA)x=b

高斯消元求解x,这题有点卡精度

#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-10;
const int N = 1e6 + 10;

int a[15][15];
int n, L;

struct AC {
    static const int maxn = 7;
    struct Trie {
        int fail;
        int son[maxn];
        int end;
    } AC[N];
    int dfn = 0;

    Trie operator[](const int x) {
        return AC[x];
    }

    void clear(int x) {
        memset(AC[x].son, 0, sizeof AC[x].son);
        AC[x].fail = AC[x].end = 0;

    }

    void insert(int *s, int len, int id) {
        int now = 0;
        for (int i = 1; i <= len; i++) {
            if (AC[now].son[s[i]] == 0) {
                AC[now].son[s[i]] = ++dfn;
                clear(dfn);
            }
            now = AC[now].son[s[i]];
        }
        AC[now].end = id;
    }

    queue<int> q;

    void get_fail() {
        for (int i = 0; i < maxn; i++) {
            if (AC[0].son[i]) {
                AC[AC[0].son[i]].fail = 0;
                q.push(AC[0].son[i]);
            }
        }
        while (!q.empty()) {
            int u = q.front();
            q.pop();
            for (int i = 0; i < maxn; i++) {
                if (AC[u].son[i]) {
                    AC[AC[u].son[i]].fail = AC[AC[u].fail].son[i];
                    q.push(AC[u].son[i]);
                } else {
                    AC[u].son[i] = AC[AC[u].fail].son[i];
                }
            }
        }
    }

    void init() {
        dfn = 0;
        clear(0);
    }

} AC;

double A[205][205];
// 高斯消元板子
int Gauss(int n) { 
    int c, r; // col row
    for (c = 1, r = 1; c <= n; c++) {
        int t = r;
        for (int i = r; i <= n; i++) {
            if (fabs(A[i][c]) > fabs(A[t][c]))
                t = i;
        }
        if (fabs(A[t][c]) < eps) continue;
        swap(A[t], A[r]);
        for (int i = n + 1; i >= c; i--) {
            A[r][i] /= A[r][c];
        }
        for (int i = r + 1; i <= n; i++) {
            if (fabs(A[i][c]) > eps) {
                for (int j = n + 1; j >= c; j--) {
                    A[i][j] -= A[r][j] * A[i][c];
                }
            }
        }
        r++;
    }

    if (r != n + 1) {
        for (int i = r; i <= n; i++) {
            if (fabs(A[i][n + 1]) > eps) return 2;
        }
        return 0;//无解
    }
    for (int i = n; i; i--) {
        for (int j = i + 1; j <= n; j++) {
            A[i][n + 1] -= A[j][n + 1] * A[i][j];
        }
    }
    return 1;
}

double res[N];

void solve() {
    cin >> n >> L;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= L; j++) {
            cin >> a[i][j];
        }
        AC.insert(a[i], L, i);
    }
    AC.get_fail();

    //获得马尔科夫链后
    // V(n)= (Σ_{k->∞} A^k) V(0)
    // V(n)=(E-A)^{-1}V(0)
    // (E-A)V(n)=V(0)
    // 转化成高斯消元 (E-A)X=b 求解x
    memset(A, 0, sizeof A);
    // 高斯消元 col:1~n+1 row:1~n
    // 所以需要A[x][y]中的x,y都需要偏移一位
    for (int i = 0; i <= AC.dfn; i++) {
        A[i + 1][i + 1] = 1.0;
    }
    for (int i = 0; i <= AC.dfn; i++) {
        for (int j = 1; j <= 6; j++) {
            if (!AC[i].end) {
                int to = AC[i].son[j];
                A[to + 1][i + 1] -= 1.0 / 6;
            }
        }
    }
    A[1][(AC.dfn + 1) + 1] = 1.0;

    Gauss(AC.dfn + 1);

    for (int i = 1; i <= AC.dfn; i++) {
        if (AC[i].end) {
            res[AC[i].end] = A[i + 1][(AC.dfn + 1) + 1];
        }
    }
    
    for (int i = 1; i <= n; i++) {
        cout << fixed << setprecision(6) << res[i] << " \n"[i == n];
    }
    
    AC.init();
}

void Run() {
    int T;
    cin >> T;
    for (int cs = 1; cs <= T; cs++) {
        solve();
    }
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);

    Run();

    return 0;
}

I The Elder
J Query on a graph
K New Signal Decomposition
L A Random Turn Connection Game
M Subsequence

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值