定义
- 树的重心也叫树的质心。对于一棵树n个节点的无根树,找到一个点,使得把树变成以该点为根的有根树时,最大子树的结点数最小。换句话说,删除这个点后最大连通块(一定是树)的结点数最小。剩余的节点必然不超过原来的n/2。
性质
- 树中所有点到某个点的距离和中,到重心的距离和是最小的,如果有两个重心,他们的距离和一样。
- 把两棵树通过一条边相连,新的树的重心在原来两棵树重心的连线上。
- 一棵树添加或者删除一个节点,树的重心最多只移动一条边的位置。
- 一棵树最多有两个重心,且相邻。
题意
问删除树的重心后,剩余的最大子树的大小
//本代码还未ac
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e6 + 10;
vector<int> g[N];
int n, m, K;
int ans = 0x3f3f3f;
int sz[N];//子树大小
void dfs(int u, int fa) {
sz[u] = 1;
int tmp = 0; //记录删除u这个节点后 剩余的子树里最大的那棵的个数
for (auto v:g[u]) {
if (v == fa)continue;
dfs(v, u);
sz[u] += sz[v];
tmp = max(tmp, sz[v]);
}
tmp = max(tmp, n - sz[u]);//父节点的那个分支
if (tmp < ans) {
ans = tmp;
} //删掉树的重心后 剩余的最大联通块的节点数应该是最小的
}
int main() {
ios::sync_with_stdio(0);
cin >> n;
for (int i = 1, u, v; i <= n; ++i) {
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
dfs(1, 0);
cout << ans << endl;
return 0;
}