P1495 【模板】中国剩余定理(CRT)/曹冲养猪

题解

中国剩余定理

已知扩展欧几里得:
在这里插入图片描述
可以推出中国剩余定理的解法:
在这里插入图片描述
前提:所有 m i m_i mi互质

对于每一个模数 m i m_i mi 和余数 a i a_i ai,中国剩余定理都是找到一个数 M i M_i Mi,这个数是其他 m j ( j ≠ i ) m_{j(j\ne i)} mj(j=i)的倍数,且存在 t i t_i ti 倍的 M i M_i Mi m i m_i mi 的模下余数为1,即 M i t i = 1   ( m o d   m i ) M_it_i=1\,(mod\,m_i) Miti=1(modmi)

然后再乘上这个 a i a_i ai,再得到这个余数 a i M i t i = a i   ( m o d   m i ) a_iM_it_i=a_i\,(mod\,m_i) aiMiti=ai(modmi)

所以,设
在这里插入图片描述
利用扩展欧几里得求出每个 t i t_i ti,然后解得
在这里插入图片描述
可以看得出来 x x x M M M 的倍数,

有些时候,有的题目会要求 最小的非负整数 x x x ,所以我们可以直接 x   m o d   M x\,mod\,M xmodM,得最小解x


中国剩余定理的常见应用

大整数的表示


在这里插入图片描述


#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int dir[4][2] = {1, 0, 0, 1, -1, 0, 0, -1};
const int N = 1e6 + 10;
ll a[N], m[N];
int n, K;

ll exgcd(ll a, ll b, ll &d, ll &x, ll &y) {
    if (b == 0) {
        d = a;
        x = 1;
        y = 0;
    } else {
        exgcd(b, a % b, d, x, y);
        ll tmp = x;
        x = y;
        y = tmp - a / b * y;
    }
}

ll CRT() {
    ll M = 1, x, y, d, res = 0;
    for (int i = 1; i <= n; ++i) M *= m[i];
    for (int i = 1; i <= n; ++i) {
        ll Mi = M / m[i];
        exgcd(Mi, m[i], d, x, y);
        res = ((res + a[i] * Mi * x) % M + M) % M;
        //有时候res可能是负的 所以还需要 +M
    }
    return res;
}

int main() {
    ios::sync_with_stdio(0);
    cin >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> m[i] >> a[i];//m[i]是模 a[i]是余数
    }
    cout << CRT() << endl;
    return 0;
}

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页