【模板】欧拉函数

https://oi-wiki.org/math/euler/

费马小定理

如果 p p p 是一个质数,对于任意小于 p p p 的正整数 a a a 均有 : a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1\pmod{p} ap11(modp)

运用1:模意义下, a a a 的逆元 = a p − 2 ( m o d p ) =a^{p-2}\pmod p =ap2(modp)

∵ a p − 1 = a × a p − 2 ≡ 1 ( m o d p ) \because a^{p-1} = a\times a^{p-2} \equiv1\pmod p ap1=a×ap21(modp)

∴ 1 a ≡ a p − 2 ( m o d p ) \therefore \frac{1}{a}\equiv a^{p-2}\pmod p a1ap2(modp)

ps: 当 p p p 不是质数时,需要用 扩展卢卡斯

二次探测定理

p p p 为素数, a 2 ≡ 1 ( m o d p ) a^2≡1\pmod p a21(modp) 小于 p p p 的正整数解只有 1 1 1 p − 1 p-1 p1

满足费马小定理和二次探测定理的数可以确定是素数

扩展:

求解 a 2 = n m o d    p a^2=n\mod p a2=nmodp -【模板】 二次剩余

欧拉函数

欧拉函数、欧拉定理

对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目

N = p 1 a 1 ∗ p 2 a 2 ∗ . . . ∗ p n a n N=p_1^{a_1}*p_2^{a_2}*...*p_n^{a_n} N=p1a1p2a2...pnan,则

φ ( N ) = N ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p n ) \varphi (N)=N(1-\cfrac{1}{p_1})(1-\cfrac{1}{p_2})...(1-\cfrac{1}{p_n}) φ(N)=N(1p11)(1p21)...(1pn1)

若n是质数p的k次幂, φ ( n ) = p k − p k − 1 = ( p − 1 ) p k − 1 \varphi(n)=p^k-p^{k-1}=(p-1)p^{k-1} φ(n)=pkpk1=(p1)pk1

当n为奇质数时 φ ( 2 n ) = φ ( n ) \varphi(2n)=\varphi(n) φ(2n)=φ(n)

当n为质数时 φ ( n ) = n − 1 \varphi(n)=n-1 φ(n)=n1

a a a b b b 互质时, φ ( a b ) = φ ( a ) φ ( b ) \varphi(ab)=\varphi(a)\varphi(b) φ(ab)=φ(a)φ(b)

扩展:

n n n 的所有因子之和 = ( p 1 0 + p 1 1 + p 1 2 . . . + p 1 a 1 ) ∗ ( p 2 0 + p 2 1 + p 2 2 . . . + p 2 a 2 ) . . . ( p n 0 + p n 1 + p n 2 . . . + p n a n ) =(p_1^0+p_1^1+p_1^2...+p_1^{a_1})*(p_2^0+p_2^1+p_2^2...+p_2^{a_2})...(p_n^0+p_n^1+p_n^2...+p_n^{a_n}) =(p10+p11+p12...+p1a1)(p20+p21+p22...+p2a2)...(pn0+pn1+pn2...+pnan)

欧拉筛

当 i 为质数时,可以直接求得 φ ( i ) = i − 1 \varphi(i)=i-1 φ(i)=i1

当 i 不为质数时,其通过它的质因子得到 φ \varphi φ 值,

通过任意数 i,其倍数 i*prime[j] 的 φ \varphi φ 值,有两种情况:

  1. i%prime[j]==0 φ ( i ∗ p r i m e [ j ] ) = φ ( i ) ∗ p r i m e [ j ] \varphi(i*prime[j])=\varphi(i)*prime[j] φ(iprime[j])=φ(i)prime[j]
  2. i%prime[j]!=0 φ ( i ∗ p r i m e [ j ] ) = φ ( i ) ∗ ( p r i m e [ j ] − 1 ) \varphi(i*prime[j])=\varphi(i)*(prime[j]-1) φ(iprime[j])=φ(i)(prime[j]1)

相关证明 - AcWing 874 筛法求欧拉函数

欧拉定理

  1. ( a , n ) (a,n) (a,n) 互质时,可以得出 a φ ( n ) = 1   ( m o d    n ) a^{\varphi(n)}=1\,(\mod n) aφ(n)=1(modn)
  2. 设三角形的外接圆半径为 R R R,内切圆半径为 r r r,外心与内心的距离为 d d d,则 d 2 = R 2 − 2 R r d^2=R^2-2Rr d2=R22Rr
  3. 如果一个联通平面图 G G G 有个 V V V 顶点、 E E E 条边、 F F F 个面,那么 V − E + F = 2 V-E+F=2 VE+F=2
  4. e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos\theta+i\sin\theta eiθ=cosθ+isinθ

欧拉降幂

a b m o d    p = a b m o d    φ ( p ) + φ ( c ) m o d    p a^b\mod p=a^{b\mod \varphi(p)+\varphi(c)}\mod p abmodp=abmodφ(p)+φ(c)modp


板子

欧拉函数

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n, m, K;

int phi(int n) { //欧拉函数 板子
    int res = n;
    for (int i = 2; i * i <= n; ++i) {
        if (n % i == 0) {
            res = res / i * (i - 1);//防止溢出
            while (n % i == 0)n /= i;
        }
    }
    if (n > 1) res = res / n * (n - 1);//质数
    return res;
}

int main() {
    ios::sync_with_stdio(0);

    int T;
    cin>>T;
    for (int cs = 1; cs <= T; ++cs) {
        cin >> n;
        cout << phi(n) << endl;
    }
    return 0;
}

欧拉筛

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e6 + 10;
int n, m, K;

int phi[N], prime[N], cnt = 0;
bool vis[N];

void get_euler(int n) {//欧拉筛
    phi[1] = 1;
    for (int i = 2; i <= n; ++i) {
        if (!vis[i]) {
            prime[cnt++] = i;
            phi[i] = i - 1;
        }
        for (int j = 0; i * prime[j] <= n; ++j) {
            vis[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }
            phi[i * prime[j]] = phi[i] * (prime[j] - 1);
        }
    }
}

int main() {
    ios::sync_with_stdio(0);
    cin >> n;
    get_euler(n);
    ll res = 0;
    for (int i = 1; i <= n; ++i) {
        res += phi[i]; //求 1~n的欧拉数之和
    }
    cout <<res << endl;
    return 0;
}

欧拉降幂

ll phi(ll n) { //欧拉函数 板子
    int res = n;
    for (ll i = 2; i * i <= n; ++i) {
        if (n % i == 0) {
            res = res / i * (i - 1);//防止溢出
            while (n % i == 0)n /= i;
        }
    }
    if (n > 1) res = res / n * (n - 1);//质数
    return res;
}

ll qpow(ll a, ll b) {//快速幂
    a %= mod;
    ll res = 1;
    while (b) {
        if (b & 1)res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}


ll euler(ll a, ll b,ll p) {// a^b % p
    return qpow(a, ((b % phi(p)) + phi(p));
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值