题目
给定一个二维的矩阵,包含 'X' 和 'O'(字母 O)。
找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充。
示例:
X X X X
X O O X
X X O X
X O X X
运行你的函数后,矩阵变为:X X X X
X X X X
X X X X
X O X X
解释:
被围绕的区间不会存在于边界上,换句话说,任何边界上的 'O' 都不会被填充为 'X'。 任何不在边界上,或不与边界上的 'O' 相连的 'O' 最终都会被填充为 'X'。如果两个元素在水平或垂直方向相邻,则称它们是“相连”的。
来源:力扣(LeetCode)
解
这道题正向解很难做,因为你不知道满足要求的 ‘O’ 区域被扩展到哪?所以这里主要是根据矩阵特点,反向来做,即从边界开始,找出所有相连的 ‘O’ 位置,这些是不被包围的。剩下的,就是被包围的,即应该被重置为 ‘X’ 的。
建议采用深度优先搜索,可以节省点遍历的时间。
class Solution {
private int[] x={1,0,-1,0};
private int[] y={0,1,0,-1};
private char[][] b;
private int r,c,tx,ty;
public void dfs(int i,int j){
b[i][j]='a'; //与边界相连的‘O’暂时置为‘a’
for(int k=0;k<4;k++){
tx=i+x[k];
ty=j+y[k];
if(tx>r || tx<0 || ty>c || ty<0 || b[tx][ty]=='X' || b[tx][ty]=='a'){
continue;
}else{
dfs(tx,ty);
}
}
}
public void solve(char[][] board) {
if(board.length==0){
return;
}
r=board.length-1;
c=board[0].length-1;
b=board;
//边界开始检索
for(int i=0;i<=r;i++){
if(b[i][0]=='O'){
dfs(i,0);
}
if(b[i][c]=='O'){
dfs(i,c);
}
}
for(int j=0;j<=c;j++){
if(b[0][j]=='O'){
dfs(0,j);
}
if(b[r][j]=='O'){
dfs(r,j);
}
}
//重置‘X’,恢复保留的‘O’
for(int i=0;i<=r;i++){
for(int j=0;j<=c;j++){
if(b[i][j]=='O'){
b[i][j]='X';
continue;
}
if(b[i][j]=='a'){
b[i][j]='O';
}
}
}
}
}