数据结构学习笔记---树(二)

本文介绍了树的两种主要存储结构——顺序存储(适用于满二叉树和完全二叉树)和链式存储(包括二叉链表和三叉链表)。重点讲解了树的遍历方法,包括层次遍历、先序遍历、中序遍历和后序遍历。此外,还详细阐述了哈夫曼树的概念,它是带权路径长度最小的最优二叉树,用于数据压缩和编码。哈夫曼编码通过左支标记0,右支标记1,为每个节点生成唯一的编码,从而降低带权路径长度。
摘要由CSDN通过智能技术生成

一 .树的存储结构

1. 顺序存储机构:适合 满二叉树和完全二叉树

2 .链式存储结构:普通的二叉树

二叉链表:不标记双亲结点
在这里插入图片描述

三叉链表:标记双亲结点
在这里插入图片描述

3.树的遍历:

层次遍历:若二叉树为空,则为空操作;否则,按自上而下先访问第0层的根结点,然后再从左到右依次访问各层次中的每一个结点。在这里插入图片描述
先序遍历:先访问根结点,再访问左子结点,最后访问右子结点
在这里插入图片描述

中序遍历:先访问左子结点,再访问根结点,最后访问右子结点
在这里插入图片描述

后序遍历:左子结点,在访问右子结点,最后访问根结点
在这里插入图片描述

eg:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二.哈夫曼树(最优二叉树)

1)最优二叉树(哈夫曼树):带权路径长度WPL最小

2) 结点路径长度:根结点到这个结点的边数

3) 结点的权: 在实际应用中,人们往住会给树中的每一个结点赋予一个具有某种实际意义的数值,这个数值被称为该结点的权值。

4) 树的权WPL:所有结点的权之和

5)哈夫曼编码:对于一颗最优二叉树,左支标为0,右支标为1,最终得到每个结点的哈夫曼编码

6)结点的带权路径长度:结点的路径长度与该结点的权值的乘积。

eg:

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值