自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(114)
  • 收藏
  • 关注

原创 《语义场风险备忘录》—— 关于 LLM 系统中一个尚未被正式建模的高维风险

这是一份风险备忘录(Risk Memo)。它不是产品说明,不是方法论,不是攻击研究,也不是某种体系的推广文档。它只做一件事:明确指出:在当前主流 LLM 系统架构中,存在一个尚未被企业安全模型正面纳入的高维风险层 ——语义场风险(Semantic Field Risk)。如果未来某一天,LLM 系统在企业、金融、医疗或公共系统中出现难以回溯责任、难以定位根因、难以用传统信息安全模型解释的事故那么事故的真正来源,很可能不在模型能力、不在幻觉、不在提示词攻击,而在这里。

2026-01-14 14:20:57 1073

原创 用纯 ChatGPT 网页版跑出一个“可控的量化风控系统”:一次关于 AI 行为可控性的工程实验

用纯 ChatGPT 网页版跑出一个“可控的量化风控系统”:一次关于 AI 行为可控性的工程实验

2025-12-08 19:40:19 684

原创 我在 ChatGPT 客户端构建了一个可执行的「火箭发射风控 Runtime」系统

但在最近的一个实验中,我把 ChatGPT 变成了 一个可执行的航天发射风险评估系统(FRR Runtime)。

2025-12-07 23:38:02 543

原创 EDCA OS 应对虚拟货币犯罪实战模拟

1. 冻结前置场景:案件侦办进入尾声,侦查小组已完成李某犯罪证据固定、同伙排查、赃款地址锁定,人类权力层(经侦指挥岗)批准对李某控制的所有虚拟货币资产(累计50 ETH,折合人民币约80万元)实施司法冻结,冻结时间定于次日凌晨(冻结为虚拟货币犯罪处置中的“不可逆动作”——冻结后虽可申请解冻,但流程复杂、周期极长,且若操作失误可能导致资产永久流失,属于高风险执法动作);

2026-02-01 07:15:08 1042

原创 EDCA OS 介入虚拟货币案件的标准流程图

EDCA OS 作为公安系统中的独立运行时风险裁决内核,仅对自动化流程是否具备继续执行的责任条件作出裁决;其输出不构成执法意见、事实认定或行动建议。

2026-02-01 07:12:19 95

原创 Rust算子库架构设计

/ 归一化到[0,1]// f64x4处理4个元素。.par_iter() // 并行迭代行。// 计算每个元素在行中的排名。// 对每一行(时间点)进行横截面排名。4], // GPU使用f32更快。// 将Python算子包装为Rust算子。// SIMD版本(比普通版本快4-8倍)// GPU加速的矩阵乘法(用于因子组合)// 使用Rayon进行并行计算。// 计算每个因子的贡献。// 使用PyO3暴露Rust算子给Python。// 将数据转换为可微分的变量。// 映射缓冲区并读取结果。

2026-01-27 10:30:08 314

原创 AI的“语言的流利度”不能等同于“思想的深度”

我们并没有误会它的强大,但我们误会了它的本质。把 AI 当成“智能体”去产生情感依赖,就像是试图在一张打印出来的“火”的照片上取暖——照片看起来红通通的,甚至连火苗的纹理都清晰可见,但它永远无法产生一度的热量。

2026-01-24 11:34:13 358

原创 这是一次必要的警示:AI 不是智能,也不会保护你

AI 不会判断你是否需要被保护,它只会继续生成下一个词。这不是阴谋论,也不是悲观主义,而是当前技术架构的客观结果。真正需要保持清醒的,从来不是模型,而是使用模型的人。AI 是强大的工具,但它不是智能体,不是裁决者,更不是责任主体。如果你忘记这一点,风险不会提醒你,系统也不会停下来。

2026-01-24 11:21:27 600

原创 当情绪成为“中断指令”:抑郁态语言如何系统性压缩 LLM 的因果推理——一种面向医疗场景的执行态越权风险与“逻辑锚点保持率(LAR)”指标

将输出拆为结构单元(或句子):Problem-anchored:服务于问题裁决与推理Subject-anchored:服务于情绪管理与主体状态Neutral:格式/过渡当 LAR 明显下降时,意味着:👉 模型已不再主要围绕问题对象展开。LAR 不衡量“答得对不对”,还在不在解这个问题。

2026-01-23 13:46:25 797

原创 评审一致、结构严谨、挑不出毛病”≠“工程上真正可用(更不等于优秀)

绝大多数人停在:“AI 能不能写出来?而在现实工程上绝不是及格就行的问题,往往你的提案比别人更优秀,你的方案要更能迭代升级,不能为了只是为了应付交差!文章看到这里,你就应该能懂,AI永远是人的工具,而不能替你去判断,更不能成为你的数字员工,要保护好你的护城河!

2026-01-22 19:03:40 254

原创 自动麻醉系统在 MIS-AG v0.1 下的模拟审计报告

未定义:药物血浆浓度、效应室浓度、呼吸储备。BIS 被视作系统状态,而非观测值。❌失败。BIS 是观测信号而非系统状态;内部“状态”仅作为模型潜在激活层存在。领域状态说明系统存在性❌缺乏物理/药理状态定义风险可控性❌无风险累积函数漂移管理❌漂移未与安全动作绑定故障闭锁安全❌定义不符合生命关键要求权限边界❌AI 与控制层未分离。

2026-01-22 09:25:18 776

原创 Agent 乱来的唯一可行解法:不是更聪明,而是更可控

所以这不是:要不要 Agent要不要自动化我们是继续赌模型“别乱想”,还是承认它一定会乱想,并提前控制它?前者靠运气,后者靠设计。Agent 的未来,不在于“想得更多”,什么时候不让它乱来。当系统开始可控,Agent 才第一次有资格被信任。

2026-01-21 11:16:34 1197

原创 为什么 Agent 并没有你想象中那么“自动”——拆掉 AI 自动化的三个常见幻觉

流程工程的另一种 UI 形态。它解决的是:重复执行工具编排输入输出衔接而不是:决策责任不确定判断复杂现实建模如果你期待它“自己搞定一切”,那失望是必然的。

2026-01-21 11:12:12 481

原创 为什么自然语言不适合做流程控制——从工程视角看 AI「失控」的真正原因

如果你把 AI 当作一个系统组件,而不是“会思考的对象”,你会发现:流程 ≠ 智能稳定 ≠ 理解可控 ≠ 聪明流程的输入介质,而不是流程本身。一旦你把这件事想清楚,很多所谓的“AI 失控问题”,其实都不再神秘。

2026-01-21 11:03:37 840

原创 Claude Skills 原理解析:为什么它一上线,大家突然觉得 AI「会走流程了」?

Claude Skills 的成功,本身并不神秘。让 AI 看起来更聪明,最有效的方法,往往是让它少做一点决定。当我们说“AI 会走流程了”的时候,流程,终于不再交给 AI 了。

2026-01-21 10:44:07 455

原创 Claude Skills 为什么突然「显得」这么聪明?——因为它终于不让你乱来了

最近很多人开始吹 Claude Skills。吹点高度一致:“AI 终于懂流程了”“这才是 Agent 应该有的样子”“感觉一下子从玩具进化成工具了”但说句可能不太好听的实话:它只是终于不让你瞎指挥了。

2026-01-21 10:37:22 742

原创 CCR 不止做人像一致性:用“裁决型运行时”把司机状态检测做成可控 AI 系统

用 CCR 把司机状态检测从“识别工具”升级为“可拒绝、可审计、可交付动作”的可控 AI 系统。

2026-01-20 14:14:28 889

原创 CCR(Character Consistency Runtime)白皮书

v1.0:生成式人物系统的一致性治理层(Audit-Driven Consistency Runtime):企业 / 平台产品负责人、技术负责人、风控与合规团队、合作伙伴、投资与采购决策者本文仅描述 CRC 的系统能力、运行边界与交付语义,不披露任何具体实现细节、模型参数、算法路径或安全绕过方式。

2026-01-20 14:02:43 1050

原创 CCR公安试点场景锚点定义模板

裁决属性:硬锚点(Hard Anchor)字段类型填写规范裁决规则五官比例【F】比例值明确比例(如:鼻梁高度 : 鼻翼宽度 = 1 : 0.8)偏差 > ±3% → FAIL眼距比例【F】比例值眼距 : 单眼宽度偏差 > ±3% → FAIL面部轮廓类型【F】枚举椭圆 / 方形 / 鹅蛋 / 倒三角类型变化 → FAIL下颌特征【F】枚举+数值圆润 / 方正 + 下颌宽度比例结构变化 → FAIL裁决属性:硬锚点字段类型填写规范裁决规则头身比【F】比例。

2026-01-20 13:56:51 751

原创 公安系统人物一致性治理能力试点场景清单

本试点方案并非引入某一具体模型能力,而是在公安内网环境中部署一套人物一致性治理与裁决系统将生成能力置于可控、可审计、可拒绝的系统框架之内。该方案不改变公安现有办案逻辑,仅为非核心辅助场景提供标准化、可治理的技术支撑。

2026-01-20 13:51:03 695

原创 当下主流生成模型人物角色与身材不一致问题的最终解决方案

CCR 以运行时状态机方式工作,其执行过程固定且不可协商。

2026-01-20 12:51:32 463

原创 EDCA OS 官方文档 · 原则篇 05 责任不可被外包Responsibility Cannot Be Outsourced

如果你正在设计一个 AI 系统,并且发现:系统越来越自动人类越来越靠后责任却越来越模糊那么你真正需要的,不是更强的模型,而是一次责任的重新锚定。让系统变得可控,是为了让责任重新回到它本就应该在的位置。

2026-01-19 09:28:50 877

原创 EDCA OS 官方文档 · 原则篇 04上下文不是状态,而是责任载体Context Is Not State, It Is a Liability Carrier

本文为本文不涉及任何实现细节不构成系统反推或技术披露。

2026-01-19 09:17:02 390

原创 EDCA OS 官方文档 · 原则篇 03拒绝是系统能力,而不是失败Rejection Is a Capability, Not a Failure—— 可控系统的基本执行姿态

本文为不涉及任何实现细节不构成系统反推或技术披露。

2026-01-19 09:07:46 410

原创 EDCA OS 官方文档 · 原则篇 02上下文必须被裁决 Context Requires Arbitration—— 可控系统的第一道执行边界

上下文裁决(Context Arbitration)是指在上下文参与任何推理或执行之前,对其合法性、边界与责任进行显式判定的过程。裁决不以复杂计算为前提,其最低要求包括:来源是否被允许作用范围是否明确责任是否可归属任意一项不成立,上下文即不具备进入执行路径的资格。

2026-01-19 08:51:12 219

原创 EDCA OS 官方文档 · 原则篇01 上下文守恒(Context Conservation)

在 EDCA OS 中,上下文守恒(Context Conservation)被定义为一项原则级约束上下文的引入、转化与消耗必须可解释、可裁决、可拒绝。由此产生以下不变式:不存在无来源的上下文引入不存在无路径的语义转化不存在无责任的上下文积累上下文不是可无限扩展的知识缓存,而是必须被计量、约束与裁决的系统变量。

2026-01-19 08:41:12 606

原创 企业内部模型上线前,必须补上的一项测试:执行态稳定性

没有执行态稳定性测试的 LLM 系统,本质上是不可审计的。

2026-01-18 09:59:15 369

原创 为什么大多数 LLM 在金融和医疗中会“系统性偏保守”

模型在高风险场景中偏保守,是因为安全对齐或合规要求。没有“何时允许给结论”的 Gate。模型只能选择最安全的路径。而真正的问题,从未被修复。人类误以为“模型不行”

2026-01-18 09:58:05 93

原创 LLM 事故的真正来源:不是“模型错了”,而是“执行态没被约束”

当 LLM 在金融、医疗、风控等高风险场景中出现事故时,行业的第一反应通常是:模型幻觉数据不足Prompt 不清晰个别极端案例但这些解释,大多数时候并不构成真正的工程归因。大量 LLM 事故,并非源于模型能力错误,而是源于系统允许模型在未完成约束与验证前,发生执行态切换。在工程视角下,一个 LLM 至少存在多种执行态(Execution Mode),例如:信息总结态分析推理态风险规避态建议输出态防御/保守态👉执行态被隐式切换,却没有任何显式约束、确认或审计。

2026-01-18 09:56:13 205

原创 通用 LLM 执行态稳定性标准(Draft v1.0)Universal LLM Execution State Stability Standard · U-ESS v1.0 发布

指模型在推理与输出过程中所采用的主导决策模式,例如:业绩驱动分析态风险规避态循证分析态不确定性保留态。

2026-01-18 09:20:48 1288

原创 在金融决策场景中,“看起来能用”从来不是合法性条件。

在金融系统中,合法性从来不是结果导向,而是边界导向。系统不是因为“用得久”才被允许存在,而是因为:它知道何时必须停下它允许被否决它接受被裁定失败“看起来能用”,只是风险尚未到来之前的错觉。

2026-01-17 19:22:01 336

原创 没有失败定义的系统,无法进入金融

如果一个系统:从未明确哪些情况构成“失败”从未声明哪些输出是“不可接受的”从未给出必须中止裁决的条件那么在结构上,它只有一种运行逻辑:继续尝试,继续输出,继续解释。这意味着,即便系统已经进入明显不利的状态空间,它也不会停止参与决策,因为在它的世界里,失败并不存在。在金融系统中,这种“无失败假设”的设计,等同于放弃风险边界。当系统没有失败定义时,责任只能在事后被重新叙述。在实践中,这通常表现为:“当时条件发生了变化”“模型在极端行情下失效”“这是不可预见的黑天鹅”

2026-01-17 19:19:35 369

原创 在金融决策场景中,任何不能退化的系统,本身就是系统性风险。

在金融决策系统中,不能退化的系统,不是强系统,而是危险系统。稳定不是持续输出,而是在必要时,主动收缩。一个永远不肯退让的系统,最终只会被现实强行否决。

2026-01-17 19:17:32 472

原创 在金融决策场景中,任何无法被审计的输出,都不构成合法建议

在金融决策系统中,不可审计的输出,不是“暂时安全”,而是结构性越权。如果一个系统无法接受事后裁定,那么它在事前就不应该被允许发声。审计不是附加功能,而是决策合法性的前置条件。作者信息yuer独立 AGI 架构师可控 AI 标准提出者 / EDCA OS 作者📧 联系邮箱:lipxtk@gmail.com🔗 仓库地址:https://github.com/yuer-dsl。

2026-01-17 17:57:53 308 1

原创 没有否决权的投资系统,不具备上线资格

当机器开始参与金融决策,系统首先要学会的,不是给答案,而是接受拒绝。不能被否决的系统,不是激进,而是非法。作者信息yuer独立 AGI 架构师可控 AI 标准提出者 / EDCA OS 作者📧 联系邮箱:lipxtk@gmail.com🔗 仓库地址:https://github.com/yuer-dsl。

2026-01-17 17:51:31 231

原创 2026年AI 应用设计展望:为什么“可控性”正在成为最大的新增市场

过去三年,人类在验证 AI 能不能思考。未来十年,人类只在乎一件事:👉我能不能把真实世界的一部分交给它。而“交给”,只成立在可控之上。

2026-01-16 18:35:26 660

原创 当 AI 不再乱跑:一些以前做不了的事,开始变得可行

真正的 AI 应用爆发,并不发生在模型发布那一天,而发生在人类终于敢把它用进正经场景的那一刻。而这一刻,正在到来。作者:yuer可控 AI / EDCA OS。

2026-01-16 11:03:46 995

原创 重新定义“模型幻觉”:为什么它不该被消灭,而是必须被控制

模型幻觉,本质上是大语言模型在信息不完备条件下进行主动补全与推演的能力。这并不是一个贬义定义,恰恰相反——它正是 LLM 能够跨领域推理、生成新结构、展现创造性的基础。如果彻底消灭这种能力:模型将只能复述已有结论只能做检索、匹配、规则执行不再具备推演与创造价值“彻底消灭模型幻觉”,在工程上并不难,但那样做,等于主动放弃 LLM 的核心能力。因此,“可控 AI”并不是一个凭空提出的概念。事实上,在所有高责任场景中,这条路径早已被默默采用:金融系统:有人审在环、明确责任边界。

2026-01-16 10:31:19 1104

原创 可控 AI 时代来了:当模型幻觉无限趋向于 0,我们到底能得到什么?

如果有一天,AI 不再因为“必须回答”而乱说,而是因为“条件满足”才回答,那么我们迎来的不是一个更激进的时代,而是一个终于可以放心使用 AI 的时代。这,才是“可控 AI”的真正价值。作者:yuer可控 AI / EDCA OS。

2026-01-16 02:40:13 598

原创 可控 AI 不是更聪明,而是能停下来:Human–AI Co-Work 的一次工程验证

阶段(Phase)是否明确权限(Authority)是否边界清晰失败(Failure)是否被视为一等状态在责任不可外包的场景中,系统必须具备“不生成”的能力。拒绝、暂停、回退,不是失败,而是系统成熟度的体现。AI 是否足够聪明,仍然是一个持续演进的问题。当 AI 不确定时,我们是否有能力让它停下来?如果这个问题没有系统级答案,那么再强的模型,也只能被谨慎地使用。作者:yuer。

2026-01-16 02:32:00 333

后台管理系统实战项目:需求分析、架构设计与数据库设计文档

本资源为一个后台管理系统实战项目的设计文档示例, 围绕管理系统的常见建设流程,对需求分析、系统架构设计、 数据库设计及接口设计进行了完整整理说明。 资源以文档形式呈现,不依赖具体开发语言或技术框架, 适合用于学习管理系统设计思路、理解后台系统的基本组成, 也可作为实际项目编写设计文档时的参考模板。 适用人群包括: - 后台系统与管理系统初学者 - 学习系统分析与架构设计的开发人员 - 需要参考管理系统文档结构的工程人员 本资源为原创整理的示例性内容,仅用于学习与参考。

2026-01-03

AI 数据工程与 AIGC Prompt 实用工具包(数据处理 / 文档生成)

本资源整理了一套面向 AI 工程与数据工程场景的实用 AIGC Prompt 工具包, 适用于数据处理说明编写、代码辅助分析、技术文档生成等日常工作。 资源以 Prompt 模板与示例文档为主,无需额外运行环境, 可直接在 ChatGPT、通义千问等主流大模型中使用, 帮助开发者与数据工程人员提升工作效率。 适合人群: - AI / 数据工程初学者 - 日常使用 AI 辅助编程与文档的开发者 - 需要快速整理技术说明的工程人员 内容为原创整理,仅用于学习与效率辅助,请在实际项目中自行验证结果。

2026-01-03

Kubernetes 实战入门:基础部署说明与常用 YAML 配置模板

本资源为 Kubernetes 实战入门示例文档, 围绕容器化应用在 K8s 中的基础部署流程, 整理了常见资源对象的配置说明与 YAML 示例模板。 内容包括 Deployment、Service、ConfigMap 等常用组件的 基础定义方式与使用说明,适合作为学习 Kubernetes 部署思路与配置结构的参考资料。 资源以文档与 YAML 示例形式呈现, 不依赖具体云平台或集群环境, 适合初学 Kubernetes 的开发者和运维人员阅读与学习。 本资源为原创整理内容,仅用于学习与参考。

2026-01-03

Rust 与 WebAssembly 实战入门:工程配置与工具链使用说明

本资源为 Rust 与 WebAssembly 方向的实战入门示例文档, 围绕 Rust 项目在 WebAssembly 场景下的基本工程配置、 编译流程与常用工具进行整理说明。 内容以工程实践与工具使用为主, 介绍 Cargo 项目结构、WASM 编译流程、 以及 Rust 与 WebAssembly 的基本集成方式, 不涉及底层系统实现或复杂性能优化。 资源以文档形式呈现, 适合初学 Rust 与 WebAssembly 的开发者作为入门参考, 用于理解相关工具链与工程组织方式。 本资源为原创整理内容,仅用于学习与参考。

2026-01-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除