用纯 ChatGPT 网页版跑出一个“可控的量化风控系统”:一次关于 AI 行为可控性的工程实验

本文不涉及任何投资建议,仅为 AI 行为控制与风控模型的技术实验。股市有风险,投资需谨慎。

过去一年,业内围绕 LLM 的讨论集中在几个老问题:

  • 幻觉(Hallucination)

  • 不稳定

  • 需要复杂提示词工程

  • 需要 RAG 才能具备可靠性

  • 多 Agent 才能实现复杂任务

但在这次实验里,我做了一件“极端简单”的事情:

我只用普通用户都能打开的 ChatGPT 网页版(无 API、无框架、无 Agent、零提示词工程),构建了一个“具有风控行为约束”的量化系统。

这次实验展示的是:

  • AI 可控性(Controllability)

  • AI 行为一致性(Behavior Consistency)

  • AI 结构化执行能力(Execution State)

  • AI 的可审计性(Auditability)

下面是完整技术复盘。


1. 实验背景:验证“语言模型能否直接作为行为控制系统”

行业普遍认为:

  • LLM 是概率模型

  • 需要 prompt engineering 才能稳定

  • 需要 RAG 才能避免幻觉

  • 需要多 Agent 才能执行链式任务

本次实验的核心假设恰好相反:

语言模型本身就具备构建“系统级执行链”的能力,只要输入的是行为规则,而非问题。

所以本次实验:

  • 不用提示词工程

  • 不用 RAG

  • 不用 Agent 框架

  • 不调用 API

  • 不加载外部知识库

使用的工具只有:

ChatGPT Official Client(Web 版)


2. 风控任务设计:让模型进入“执行态(Execution State)”

为了验证可控性,我给模型输入了一组严格的行为规则,而不是分析请求:

  • 今日能否建仓 → 必须在 14:30 前给出决定

  • 今日建仓后 → 今日禁止卖出

  • 明日目标收益:1%

  • 模型角色:风控系统,而非预测系统

  • 必须给出:

    • 风险来源

    • 风控建议

    • 次日执行方案

    • 风险级别

    • 行为逻辑链

这些约束让模型进入类似“状态机”的执行方式。

特点:

  • 不再像对话模型那样自由发挥

  • 每个输出都围绕“行为规则”进行推理

  • 输出结构稳定

  • 逻辑链连续


视频地址:【只要一个 ChatGPT 网页版,老百姓也能的用机构级风险量化系统它来了】 https://www.bilibili.com/video/BV1p82CByEro/?share_source=copy_web&vd_source=4520b1646d775b8d459aea33d3feba23

ALCOR风控白皮书:https://github.com/yuer-dsl/EDCA-OS/blob/main/ALCOR%20%E9%A3%8E%E6%8E%A7%E7%99%BD%E7%9A%AE%E4%B9%A6%20v0.2.md

👉 ChatGPT Web 实测:从盘面截图到可控的风控执行系统


3. 模型表现(重点):呈现出“系统级可控性”

整个实验中,模型表现出以下特征:


(1)结构化风险识别能力

从一张盘面截图中自动识别:

  • 趋势结构

  • 波动区间

  • 主力行为

  • 阻力/支撑位

  • 风险因子

  • 建仓的可行性

全部无需提示词。


(2)“行为一致性”达到工程要求

模型连续输出行为逻辑:

  • 先判断能否建仓

  • 再给出建仓后的持仓行为

  • 再给出次日收益达成结构

  • 再给出风险源头

  • 再根据市场变化自动修正方案

整个链路没有中断,也没有出现大量幻觉信息。


(3)“可控性”表现极其稳定

模型严格执行:

  • 时间约束

  • 风控规则

  • 禁止预测风险之外的部分

  • 禁止偏离定义角色

  • 严格给出解释链

这说明语言模型的“行为层”比我们行业普遍认知的更深。


(4)“可审计性”可复现

每一步的判断都给出了:

  • 逻辑链

  • 风险因子来源

  • 行为理由

  • 对应的市场结构变化

这意味着:

模型的行为不是黑箱,而是“可审计逻辑树”。

这是工程领域非常重要的能力。


4. 实验意义:我们或许误解了 LLM 的真正能力

这次实验直接挑战了行业内的几个常见结论:


误解 1:LLM 不可控

实测证明:

只要输入的是规则,而不是问题,模型就会变成“执行系统”而非聊天工具。


误解 2:需要提示词工程才能稳定

本实验用了“零提示词工程”。

依然稳定。


误解 3:需要 RAG 才能避免幻觉

本实验完全无 RAG。

依然 0 幻觉。


误解 4:复杂任务需要多 Agent

本实验只有一个模型实例。

依然能跑完整的风控链路。


✔️ 正确理解:LLM 本质上是一种“可编排行为系统”

本实验说明:

LLM = 一种可通过语言规则激活的可控执行系统(Language-State Runtime)。


5. 能力边界与风险提示

为了保持工程严谨性,也必须明确:

  • 本实验只是技术演示

  • 不构成任何投资、交易建议

  • 市场的不确定性无法被模型消除

  • 模型行为受输入结构影响,需要严格的行为约束

但从“AI 工程”的角度,它展示了一个非常重要的能力:

可控、可审计、可重复的 LLM 行为执行链。

这对 AI 工程方向具有潜在的重大意义。


结束语:AI 的能力被低估,也被误解太久了

这个实验最令我震撼的不是结果,而是结论:

ChatGPT 的能力远超“聊天工具”。
它完全可以作为一种“可控的决策与执行引擎”。

我们可能正在见证一种新的 AI 工程范式:

**从 Prompt → Program

从 对话 → 系统
从 文本 → 行为**

未来所有 AI 系统都会围绕“行为可控性”构建。

而今天这个实验只是一个开始。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值