本文不涉及任何投资建议,仅为 AI 行为控制与风控模型的技术实验。股市有风险,投资需谨慎。
过去一年,业内围绕 LLM 的讨论集中在几个老问题:
-
幻觉(Hallucination)
-
不稳定
-
需要复杂提示词工程
-
需要 RAG 才能具备可靠性
-
多 Agent 才能实现复杂任务
但在这次实验里,我做了一件“极端简单”的事情:
我只用普通用户都能打开的 ChatGPT 网页版(无 API、无框架、无 Agent、零提示词工程),构建了一个“具有风控行为约束”的量化系统。
这次实验展示的是:
-
AI 可控性(Controllability)
-
AI 行为一致性(Behavior Consistency)
-
AI 结构化执行能力(Execution State)
-
AI 的可审计性(Auditability)
下面是完整技术复盘。
1. 实验背景:验证“语言模型能否直接作为行为控制系统”
行业普遍认为:
-
LLM 是概率模型
-
需要 prompt engineering 才能稳定
-
需要 RAG 才能避免幻觉
-
需要多 Agent 才能执行链式任务
本次实验的核心假设恰好相反:
语言模型本身就具备构建“系统级执行链”的能力,只要输入的是行为规则,而非问题。
所以本次实验:
-
不用提示词工程
-
不用 RAG
-
不用 Agent 框架
-
不调用 API
-
不加载外部知识库
使用的工具只有:
ChatGPT Official Client(Web 版)
2. 风控任务设计:让模型进入“执行态(Execution State)”
为了验证可控性,我给模型输入了一组严格的行为规则,而不是分析请求:
-
今日能否建仓 → 必须在 14:30 前给出决定
-
今日建仓后 → 今日禁止卖出
-
明日目标收益:1%
-
模型角色:风控系统,而非预测系统
-
必须给出:
-
风险来源
-
风控建议
-
次日执行方案
-
风险级别
-
行为逻辑链
-
这些约束让模型进入类似“状态机”的执行方式。
特点:
-
不再像对话模型那样自由发挥
-
每个输出都围绕“行为规则”进行推理
-
输出结构稳定
-
逻辑链连续
视频地址:【只要一个 ChatGPT 网页版,老百姓也能的用机构级风险量化系统它来了】 https://www.bilibili.com/video/BV1p82CByEro/?share_source=copy_web&vd_source=4520b1646d775b8d459aea33d3feba23
👉 ChatGPT Web 实测:从盘面截图到可控的风控执行系统
3. 模型表现(重点):呈现出“系统级可控性”
整个实验中,模型表现出以下特征:
(1)结构化风险识别能力
从一张盘面截图中自动识别:
-
趋势结构
-
波动区间
-
主力行为
-
阻力/支撑位
-
风险因子
-
建仓的可行性
全部无需提示词。
(2)“行为一致性”达到工程要求
模型连续输出行为逻辑:
-
先判断能否建仓
-
再给出建仓后的持仓行为
-
再给出次日收益达成结构
-
再给出风险源头
-
再根据市场变化自动修正方案
整个链路没有中断,也没有出现大量幻觉信息。
(3)“可控性”表现极其稳定
模型严格执行:
-
时间约束
-
风控规则
-
禁止预测风险之外的部分
-
禁止偏离定义角色
-
严格给出解释链
这说明语言模型的“行为层”比我们行业普遍认知的更深。
(4)“可审计性”可复现
每一步的判断都给出了:
-
逻辑链
-
风险因子来源
-
行为理由
-
对应的市场结构变化
这意味着:
模型的行为不是黑箱,而是“可审计逻辑树”。
这是工程领域非常重要的能力。
4. 实验意义:我们或许误解了 LLM 的真正能力
这次实验直接挑战了行业内的几个常见结论:
❌ 误解 1:LLM 不可控
实测证明:
只要输入的是规则,而不是问题,模型就会变成“执行系统”而非聊天工具。
❌ 误解 2:需要提示词工程才能稳定
本实验用了“零提示词工程”。
依然稳定。
❌ 误解 3:需要 RAG 才能避免幻觉
本实验完全无 RAG。
依然 0 幻觉。
❌ 误解 4:复杂任务需要多 Agent
本实验只有一个模型实例。
依然能跑完整的风控链路。
✔️ 正确理解:LLM 本质上是一种“可编排行为系统”
本实验说明:
LLM = 一种可通过语言规则激活的可控执行系统(Language-State Runtime)。
5. 能力边界与风险提示
为了保持工程严谨性,也必须明确:
-
本实验只是技术演示
-
不构成任何投资、交易建议
-
市场的不确定性无法被模型消除
-
模型行为受输入结构影响,需要严格的行为约束
但从“AI 工程”的角度,它展示了一个非常重要的能力:
可控、可审计、可重复的 LLM 行为执行链。
这对 AI 工程方向具有潜在的重大意义。
结束语:AI 的能力被低估,也被误解太久了
这个实验最令我震撼的不是结果,而是结论:
ChatGPT 的能力远超“聊天工具”。
它完全可以作为一种“可控的决策与执行引擎”。
我们可能正在见证一种新的 AI 工程范式:
**从 Prompt → Program
从 对话 → 系统
从 文本 → 行为**
未来所有 AI 系统都会围绕“行为可控性”构建。
而今天这个实验只是一个开始。
3430

被折叠的 条评论
为什么被折叠?



