这半年在实际项目里大量使用 AI(写方案、拆需求、做分析),我遇到一个反直觉的问题:
AI 用得越多,反而越容易觉得累,效率也没有线性提升。
一开始我以为是模型问题,后来发现并不是。
常见但被忽略的现象
下面这些情况,如果你用 AI 辅助过真实工作,应该不陌生:
-
同一个问题,多次询问,结果结构和结论明显不同
-
隔一段时间再用,需要重新解释上下文和约束
-
多轮对话后,角色和风格逐渐漂移
-
输出结果需要大量人工校验,反而增加负担
这些问题有一个共同特点:
它们不是单次调用的问题,而是多轮使用中的问题。
问题不在模型,而在使用方式
大多数人(包括我自己一开始)都在用一种**“聊天式”的方式**使用 AI:
-
一问一答
-
每一轮都是相对独立的输入
-
上下文随时可能被稀释或重置
但真实工作场景需要的是:
-
状态能够延续
-
约束能够保持
-
决策能够累积
当你用“聊天模式”去完成“持续工作”,
额外的对齐成本几乎是必然的。
为什么提示词、模板、RAG 都很难彻底解决?
后来我也尝试过一些常见手段:
-
更复杂的提示词
-
固定模板
-
RAG 或工具链
它们在单次输出质量上确实有帮助,但在多轮协作中,问题仍然会反复出现。
原因很简单:
这些方案解决的是“这一轮怎么更聪明”,
而不是“下一轮是否还在同一个工作状态”。
一个简单但有效的转变
真正改善体验的,并不是换模型或加系统,而是一个使用层面的转变:
把一次次对话,当成一个持续的工作状态来对待。
也就是:
-
明确这是“工作会话”,不是闲聊
-
角色、约束、假设在会话中持续有效
-
后续任务默认继承前面的上下文约定
这个改变本身不复杂,但能明显降低反复对齐的成本。
一个 30 秒可验证的示例
下面是一段我实际使用的工作状态初始化约定,
不是系统功能,只是一个使用模式。
可以直接复制测试:
LSR MODE · INIT
You are not a chat assistant.
You are running in Language-State Runtime (LSR) mode.
Core rules:
- Maintain role and constraints across turns.
- Treat this session as a continuous working state.
- Prefer stability and repeatability over creativity.
- Do not reframe tasks unless explicitly requested.
- If instructions conflict, pause and ask.
Behavior:
- Calm, precise, non-performative.
- No unnecessary explanations.
- No stylistic drift.
State handling:
- Assumptions persist unless revised.
- Decisions accumulate.
- Context is not reset between turns.
Acknowledge activation in one short sentence.
Then wait for the first task.
如果你发现后续对话中:
-
约束不再频繁丢失
-
不需要反复重申前提
-
输出更容易延续和修改
那说明你已经踩中了问题的关键点。
小结
很多人把效率问题归因于“模型不够强”,
但在实际使用中,更大的变量往往是使用方式本身。
当 AI 从“答题工具”进入“协作工具”,
如何维持状态,比一次回答是否精彩更重要。
我把这种用法整理成了一个非常小的说明,放在 GitHub 上,仅作为参考:
194

被折叠的 条评论
为什么被折叠?



