用户数据的不同属性:
静态数据:指的是用户的一些基础数据信息,包括用户性别、年龄、岗位、文凭、收益等静止不动数据信息的有关数据统计分析,了解你的“用户是哪些的人”。
近期更新数据信息:为用户某段时间内的互联网线上个人行为数据,根据对用户流量时长、内容浏览详细地址痕迹\近日更新活跃的手机APP、通话时长记录方法、等具备相应及时性数据信息的数据分析,抓取用户的兴趣爱好喜好和消费习惯性等,了解你的“用户对哪些感兴趣”。
用户即时数据信息:为用户即时转变的互联网个人行为数据信息,包含交易数据信息、即时所处位置及其检索数据信息等。根据所处位置数据信息,即时获取用户的潜在消费场景,掌握住营销推广机遇,融于客户的衣食住行,掌握用户的要求,了解你的“用户在哪儿干了什么”。
数字化转型中的消费者洞察
关键一:触点数字化
线上触点包括付费媒体、自有媒体和电商,线下触点包括店内、店外线下活动、产品相关。在全渠道背景下,所有触点均应实现数据化。
关键二:一方数据的治理及打通
链接同一个消费者在不同渠道的信息,消除消费者信息孤岛,并实现统一的身份识别。
关键三:营销效果的管理系统
搭建可视化平台,将企业社交、电商、官网、搜索、媒体等上传至平台,整合成一个高层CEO、品牌经理视角的管理系统。这个管理系统可累计若干年数据、不同广告投放、不同社交活动所得到的营销效果。同时,不同时间点整个行业数字营销竞争环境的情况一目了然。
关键四:可视化数据工具
现在数据量巨大,传统的数据处理方式已不可行,需要利用交互友好的可视化数据工具,提高数据赋能营销的灵活性和敏捷性,助力企业做好大数据下的消费者洞察。
大数据消费者洞察的应用场景
个体画像
以单一用户为视角,串联用户全渠道信息(基本信息、详细个人资料、客户特征、历史交互记录等),为个性化营销提供数据支持。衔接的营销应用场景:导购终端赋能,广告动态内容投放,会员精细化运营等。
群体画像
对用户基础画像(性别分布、年龄分布、地域分布、兴趣爱好等)、行业垂直画像(餐饮偏好画像、家居偏好画像、旅游偏好画像等)、用户APP行为分布(用户APP的装卸载、活跃行为置性度)等多方数据进行整合,全方位理解用户。衔接的营销应用场景:广告投放优化,营销策略指导等。
人群细分
利用运营数据+大数据,对用户进行细分,针对特定细分人群精准营销。
用户价值模型分析
对用户价值进行分层,精准洞察赋能营销策略,驱动用户往高价值区间转化。衔接的营销应用场景:用户分层管理,用户应细化运营等。
营销ROI闭环
营销活动端采集数据,沉淀品牌主自有用户数据平台,对接阿里、京东等生态数据,验证营销效果,打造营销闭环。