题意:
给定一系列长度的电缆,将他们切成K条相等长度的电缆,问每条最长有多长?
分析:
对长度进行二分,判断能否满足K条。
二分搜索:
在求解最大化或最小化问题中,能够比较简单的判断条件是否满足,那么使用二分搜索法可以很好地解决问题。
结束判定:
正常处理整数时,对于
[l,r)
结束范围即为
l=r
,但是小数的处理就涉及精度的要求了。
在输出小数时,需要设置合理的结束条件满足精度的要求,可以指定循环次数作为终止条件,一次循环把区间的范围缩小一半,100次的循环可达到 10−30 的精度范围。也可以把终止条件设置成 (r−l)>EPS ,即指定一个区间大小。
在输出时注意处理一下。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn = 10005, INF = 200005;
double a[maxn];
int N, K;
int judge(double mid)
{
int cnt = 0;
for(int i = 0; i < N; i++){
cnt += floor(a[i]/mid);
}
if(cnt>=K) return 1;
else return 0;
}
int main (void)
{
scanf("%d%d",&N,&K);
for(int i = 0; i < N; i++) scanf("%lf",&a[i]);
double l = 0, r = INF, mid;
for(int i = 0; i < 100; i++){
mid = l + (r - l)/2;
if(judge(mid)) {l = mid ;}
else r = mid;
}
printf("%.2f\n", floor(l*100)/100);
}
floor函数差点忘了都