CPU版本torch与torchvision更换至GPU版本(离线安装)

本文详细介绍了如何检查和确认PyTorch的CPU/CUDA版本,卸载现有版本,然后根据Nvidia显卡的CUDA版本选择合适的torch和torchvisionwheel文件进行离线安装。关键步骤包括查看CUDA版本,选择匹配的torch与torchvision版本,以及使用pip进行安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.进入python环境,输入:
 

import torch
print(torch.__version__)
print(torch.cuda.is_available())

 得到结果:torch是CPU版本且cuda不可用

 

2.卸载torch和torchvision

#先退出python环境
pip uninstall torch

pip uninstall torchvision

 

 

确认卸载后 ,在终端输入

nvidia-smi.exe

以查看Nvidia显卡的CUDA版本

注意右上角的 CUDA Version,此处版本为11.1,对应的torch的版本为cu111

再在终端输入:

python -m pip debug --verbose

以查看自己能安装的wheel版本

 这里选择第一个 cp38-cp38-win_amd64

其中:cp表示python版本3.8,win_amd64表示windows 64位操作系统,结合之前的Cuda版本,

进入https://download.pytorch.org/whl/torch_stable.html下载对应的torch和torchvision以便进行离线安装。

使用Ctrl+F查找到自己对应的版本,注意!torchvision版本要与torch版本对应!如果不了解可以通过下方链接查看:

torch torchvision版本对应关系_torch与torchvision版本_四木小子的博客-CSDN博客

torch1.9.1对应的torchvision版本是0.10.1,如果vision版本下载不符合条件的话pip会自动下载对应旧/新版本

 

 

 

 接下来在终端进入你torch和torchvision目前所在的文件夹

#因为下载地址在G盘,所以先切换到G盘
C:\Users\Administrator> G:

G:\>cd G:\下载

G:\下载>pip install torch-1.9.1+cu111-cp38-cp38-win_amd64.whl
#pip intstall + 你下载的包名,下同

G:\下载>pip install torchvision-0.10.1+cu111-cp38-cp38-win_amd64.whl

 确保出现Successfully installed后

终端输入pip list,查看torch和torchvision

进入Python环境

import torch

torch.__version__

torch.cuda.is_available()

torch.cuda.get_device_name(0)

 至此,安装完成。

### 如何选择兼容的 PyTorchTorchVisionTorchaudio 版本 为了确保不同组件之间的兼容性,在选择 `PyTorch`、`TorchVision` 和 `Torchaudio` 的版本时,建议遵循官方推荐的组合方式。通常情况下,这些库会发布相互匹配的版本来保证最佳性能和稳定性。 对于 CPU 用户来说,可以参考特定命令来进行安装: ```bash pip install torch==1.13.1+cpu torchvision==0.14.1+cpu torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cpu ``` 上述命令适用于仅使用 CPU 进行计算的情况[^2]。这里选择了 `PyTorch 1.13.1` 及其对应的 `TorchVision` 和 `Torchaudio` 版本,并指定了额外索引 URL 来获取适合 CPU 架构的二进制包。 而对于 GPU 支持,则可以根据 CUDA 版本来挑选合适的 PyTorch 版本。例如,如果计算机上已安装了 CUDA 11.7 并希望利用它加速运算,那么可以选择如下命令进行离线安装: ```bash pip install C:\Users\19947\Desktop\新建文件夹 (3)\torch-1.13.0+cu117-cp310-cp310-win_amd64.whl ``` 此方法允许用户下载预先编译好的 whl 文件并直接通过本地路径完成安装过程[^4]。 另外一种常见的方式是借助 Anaconda 或 Miniconda 创建虚拟环境并通过 Conda 渠道管理依赖关系: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c nvidia ``` 这条语句不仅能够自动处理好各个软件包间的相依性问题,还能简化跨平台部署的工作量[^3]。 总之,当决定要使用的具体版本时,应该先确认目标硬件条件(比如是否有 NVIDIA 显卡及其驱动程序),再查阅最新的官方文档或社区指南以找到最适配的一组参数设置。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值