- 博客(149)
- 收藏
- 关注
原创 【LightRAG:轻量级检索增强生成框架】
LightRAG是***大学开发的轻量级检索增强生成框架,通过结合知识图谱和向量检索技术优化传统RAG系统。其核心流程包括实体关系提取、图基文本索引、双层检索和答案生成
2025-05-28 15:07:28
394
原创 【知识图谱-二-RAG与知识图谱的区别】
知识图谱与RAG(Retrieval-Augmented Generation)是两种不同的技术,分别用于处理结构化和非结构化的信息。
2025-05-22 14:34:25
807
原创 【知识图谱-一-综述】
知识图谱是一种结构化的语义网络,用于表示现实世界中的实体及其关系,通过图结构(节点和边)组织信息,使机器能够更好地理解和推理
2025-05-22 14:17:10
664
原创 【RAG-十 二 -检索增强技术之新范式Self-RAG】
Self-RAG 是一种具有自适应能力的 RAG 新范式,它在传统的“检索 → 生成”流程中加入了多个用于评估和决策的判别模块(Reasoning Steps),形成一个闭环反馈系统。其核心思想是:检索到的文档是否相关;生成的答案是否基于上下文;答案是否真正回答了用户的问题;如果任一条件不满足,则触发相应的修正机制(如重新检索、调整提示、生成假设文档等),直到满足质量要求为止。Self-RAG是 RAG 技术演进的重要里程碑,它突破了传统“一次检索 + 一次生成”的线性结构,引入了。
2025-05-11 09:30:00
611
原创 【RAG-十 一-检索增强技术之迭代增强】
迭代增强(Iterative RAG)是一种将 RAG 过程重复执行多次的方法。检索(Retrieve):基于当前问题或子问题从知识库中检索相关信息;增强(Augment):将检索结果与已有上下文融合;生成(Generate):生成中间答案,并从中提取新线索(如关键词、子问题等);反馈(Feedback):将新线索用于下一轮检索,形成闭环迭代。多跳问答(Multi-hop QA)复杂推理任务需要多步检索才能回答的问题用户提问模糊或信息不完整的情况优势描述提高准确性。
2025-05-10 11:30:00
1054
原创 【RAG-十-检索增强技术之重排序rerank】
在初步检索得到一个候选文档列表之后,使用更强的排序模型(通常是 Cross-Encoder 架构)对这些文档重新打分并排序。Cross-Encoder 是一种比双塔结构(Bi-Encoder)更精确的语义匹配方式,它对用户输入和候选文档相关性进行打分,而不是生成embeding的方式来排序。重排序(Rerank)是 RAG 系统中不可或缺的一环,属于“检索后增强”的关键技术。通过使用 Cross-Encoder 类模型(如),我们可以显著提升检索结果的相关性和排序质量。使用轻量级模型提高效率;
2025-05-10 08:00:00
1313
原创 【RAG-九-增强检索技术之融合检索BM25+Embeding】
融合检索是一种将多种检索方法的结果进行加权整合的策略。语义向量检索(Dense Retrieval):如使用 FAISS 或 ANN 实现的基于 Embedding 的近似最近邻搜索;关键词检索(Sparse Retrieval):如 BM25 等传统信息检索算法。语义检索能捕捉深层语义关系;BM25 能有效利用关键词频率等结构化信息。通过融合排序(Re-ranking),可以综合两者的优势,提高最终检索结果的相关性。
2025-05-09 09:00:00
1093
原创 【RAG-八-检索增强技术之多索引检索】
首先将原始文档分割成多个大块;然后每个大块进一步被拆分为更小的片段用于精确匹配用户查询;在检索时,使用这些小片段进行匹配,但最终返回的是包含最佳匹配小片段的大块文档给模型处理。这种方法能够在保证检索精度的同时,确保提供给模型足够的上下文信息,以生成更加准确的回答。在构建知识库时,预先为每篇文档生成一个简短的摘要;在检索阶段,首先根据用户的查询匹配摘要;如果摘要匹配成功,则返回对应的原始长文档内容。这种方法可以显著提升检索效率,因为摘要比全文更短、更聚焦于核心信息。
2025-05-09 07:00:00
1124
原创 【RAG-七-检索增强技术之 抽象提取】
在2025年的今天,随着人工智能技术的不断进步,RAG(Retrieval-Augmented Generation)作为一项重要的自然语言处理技术,正在被广泛应用于各种场景中。然而,在实际应用中,用户的问题往往包含大量细节,这些细节可能导致检索的时候忽略关键信息,降低检索性能。为此,Google提出了一种名为“”的方法来解决这一问题。
2025-05-08 08:00:00
755
原创 【RAG-六-检索增强技术之查询改写】
D, I = index.search(embedding, k=2) # 检索最相关的两个文档print(f"-
2025-05-08 07:00:00
1889
原创 【RAG-五-检索增强技术之子问题查询-问题拆解】
print(f"-d } ")d } ")- 《太空日记》——杨利伟写给青少年的航天故事- 《时间简史》是一本关于宇宙起源和发展的经典科普书- 《十万个为什么》第六版涵盖物理、化学、生物等多个领域。
2025-05-07 10:00:00
1005
原创 【RAG-四-检索前增强技术之HyDE假设文档增强】
是一种基于大语言模型(LLM)的查询增强方法。其核心思想是:给定一个用户查询,使用语言模型生成一段描述性的假设文档,然后将该文档编码为稠密向量,代替原始查询进行检索。
2025-05-07 09:30:00
1169
原创 【RAG-三-检索前增强技术之 query2doc】
查询增强是指在不改变用户意图的前提下,对原始查询进行扩展、重写或改写,以生成更准确、更具代表性的搜索请求,从而提高检索系统的召回率和准确率。(Q2D)是一种新兴的查询增强策略,其核心思想是通过一个深度学习模型,将用户的原始查询(query)转换为一个伪文档(pseudo-document),该伪文档包含了与原始查询高度相关的语义信息,并可作为增强后的“查询表示”用于后续检索。提高召回率和准确率解决词汇鸿沟问题适用于多种检索任务。
2025-05-06 15:29:38
845
原创 【RAG-二-稀疏和稠密检索】
稀疏检索是一种基于传统词频统计模型的方法,通常使用像TF-IDF或BM25这样的特征表示。每个文档或查询被表示为一个高维但稀疏的向量,其中大多数元素为零,只有少数词汇项具有非零值。特点高维度向量中大部分为0基于关键词频率和倒排索引维度稀疏检索稠密检索表示方式高维稀疏词袋向量低维密集语义向量检索速度快较慢(需 ANN 加速)可解释性高低训练成本无高(需大量标注数据)语义理解能力有限(依赖关键词重合)强(理解上下文和同义词)
2025-05-06 15:19:25
1170
原创 【RAG】-----大模型应用---一-总述
RAG Retrieval-augmented Generation,大模型增强技术,现在热门的大模型技术之一。本文是开篇综述
2025-04-03 15:15:00
353
原创 AI Agent--搞懂AI Agent的原理
在AI Agent出来之前,使用AI的方式是指令方式,AI Agent则不需要人类提供明确的行为或者步骤,只提供目标,AI要自己想办法达成目标。
2025-03-28 14:37:42
399
原创 【百度大模型-API使用】
使用调用API的方式调用百度千帆大模型,实际上平台本身的文档写的很清楚,链接:https://cloud.baidu.com/?from=console,此处为初次入门的摘要。
2024-11-28 16:44:44
764
原创 【machine learning-16-学习率learning rate的选择】
learning rate的选择对梯度下降的影响至关重要,简介选择学习率呢。
2024-09-23 09:30:57
402
原创 【ollama 下载不下来的问题解决】
国内从官网下载ollama经常遇到下载不下来,或者卡住的问题,今天给大家分享解决这个问题的方法。
2024-09-18 13:10:02
101979
12
原创 【machine learning-十-梯度下降-学习率】
在梯度下降算法中,学习率的选择很重要,不恰当的选择,甚至可能导致损失发散,而非收敛,下面就看一下学习率的影响。
2024-09-16 19:46:49
754
原创 【machine learning-十-grading descent梯度下降实现】
grading descent 算法就是更新参数,今天来学习下如何更新w和b。
2024-09-16 11:51:25
645
原创 【machine learning-九-梯度下降】
梯度下降算法就是解决解决这个问题的,它不仅可以用于线性回归,还可以用于神经网络等深度学习算法,是目前的通用性算法。
2024-09-15 22:08:22
541
原创 【machine learning-七-线性回归之成本函数】
在线性回归中,我们说到评估模型训练中好坏的一个方法,是用成本函数来衡量,下面来详细介绍一下。
2024-09-12 22:01:28
1476
原创 【machine learning-六-supervise learning之线性回归模型】
线性模型是人工智能监督学习中最广泛的应用,所以有必要先学习一下这个基础模型,做好基石。
2024-09-12 09:20:09
1244
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人