数论基础之欧拉函数和欧拉定理

欧拉函数 φ ( n ) \varphi(n) φ(n)

  • 概念:小于 n 且与 n 互质的正整数的个数。
  • 具体可见这里

模 n 的既约剩余系

  • 概念:由 φ ( n ) \varphi(n) φ(n)个整数构成的集合,其中每个元素均与 n 互质,且任何两个元素模 n 不同余。
  • 举例:{1,3,5,7}是模 8 的一个既约剩余系。如果把每个元素乘上与 8 互质的数d,得到的集合也是模 8 的一个既约剩余系,比如乘 3 得{3,9,15,21}。要求 g c d ( d , n ) = 1 gcd(d,n)=1 gcd(d,n)=1

把各个元素相乘可以得到 3 4 ∗ 1 ∗ 3 ∗ 5 ∗ 7 ≡ 1 ∗ 3 ∗ 5 ∗ 7 ( % m ) 3^{4}*1 * 3 * 5 * 7\equiv1*3*5*7(\%m) 3413571357(%m)
把1,3,5,7打包看成 a ,各数相乘还是和 m 互质,所以存在 a 在模 m 下的逆元 a − 1 a^{-1} a1可得到
d φ ( m ) = 1 ( % m ) d^{\varphi(m)}=1(\%m) dφ(m)=1(%m)
d ∗ d φ ( m ) − 1 = 1 ( % m ) d*d^{\varphi(m)-1}=1(\%m) ddφ(m)1=1(%m)
就得到了 d 在模 m 下的逆元。所以求解逆元可以用欧拉定理来求,配合快速幂,复杂度 O ( l o g n ) O(logn) O(logn)

欧拉定理

  • 性质:设 m 为一正整数,d 是一个整数,m ,d 互质,则 d φ ( m ) ≡ 1 ( % m ) d^{\varphi(m)}\equiv1(\% m) dφ(m)1(%m)
  • 简单证明在上。
  • 应用:求解同余方程 a x ≡ b ( % m ) ax\equiv b(\% m) axb(%m)
    两边同乘 a 的逆,得 x ≡ b ∗ a φ ( m ) − 1 x\equiv b*a^{\varphi(m)-1} xbaφ(m)1
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值