利用Dijkstra算法求下图中从顶点a到其他各顶点间的最短路径,写出执行算法过程中各步的状态。
解答:
注:path中记录的该结点的前一个结点的标号,暂时不能到达的置为-1。
1. S={a} U={b,c,d,e,f,g}
dist[ ] = { 0,15,2,12,∞,∞,∞ } path[ ] = { a,a,a,a,-1,-1,-1 }
2. S = { a,c } U={b,d,e,f,g} //每次加入剩余结点中dist值最小的结点
dist[ ] = { 0,15,2,12,10,6,0 } path[ ] = { a,a,a,a,c,c,-1 }
3. S = { a,c,f } U={b,d,e,g}
dist[ ] = { 0,15,2,11,10,6,16 } path[ ] = { a,a,a,f,c,c,f }
4. S = { a,c,f,e } U={b,d,g}
dist[ ] = { 0,15,2,11,10,6,16 } path[ ] = { a,a,a,f,c,c,f }
5. S = { a,c,f,e,d } U={b,g}
dist[ ] = { 0,15,2,11,10,6,14 } path[ ] = { a,a,a,f,c,c,d }
6. S = { a,c,f,e,d,g } U={b}
dist[ ] = { 0,15,2,11,10,6,14 } path[ ] = { a,a,a,f,c,c,d }
7. S = { a,c,f,e,d,g,b } U={ }
dist[ ] = { 0,15,2,11,10,6,14 } path[ ] = { a,a,a,f,c,c,d }
如:a->g的最短路径为:a->c->f->d->g
长度为:13.