《高等物理:从入门到精通》
目录
第一卷:经典物理与数学工具
第1章 数学基础与物理建模
-
数学工具
-
矢量分析与张量初步(梯度、散度、旋度)
-
常微分方程与级数解法(傅里叶级数在物理中的应用)
-
变分法基础(欧拉-拉格朗日方程推导)
-
-
物理建模语言
-
量纲分析与无量纲化(Π定理)
-
对称性在物理中的核心地位(诺特定理初步)
-
第2章 经典力学
-
牛顿力学与解析力学
-
牛顿定律的微分几何表述(流形上的力学)
-
拉格朗日力学(广义坐标与最小作用量原理)
-
哈密顿力学(相空间与泊松括号)
-
-
连续介质与场
-
刚体动力学(欧拉角与角动量定理)
-
弹性力学波动方程(应力-应变张量)
-
第3章 电磁学与相对论
-
电磁场理论
-
麦克斯韦方程组的微分与积分形式(矢量场论)
-
电磁波传播与边界条件(波导与谐振腔)
-
-
狭义相对论
-
洛伦兹变换的几何解释(闵可夫斯基时空)
-
相对论性动力学(四维动量与质能方程)
-
第二卷:统计物理与量子革命
第4章 热力学与统计力学
-
宏观与微观桥梁
-
热力学势与勒让德变换(吉布斯自由能)
-
系综理论(微正则、正则、巨正则)
-
-
相变与临界现象
-
伊辛模型与平均场理论(序参量概念)
-
重整化群思想(标度律与普适性)
-
第5章 量子力学
-
形式理论
-
希尔伯特空间与算符(本征值问题)
-
路径积分表述(经典-量子对应)
-
-
应用专题
-
氢原子与角动量代数(球谐函数)
-
微扰论与变分法(斯塔克效应与氦原子)
-
第6章 固体物理
-
晶体与电子
-
倒格子与布里渊区(X射线衍射)
-
紧束缚模型与能带计算(DFT初步)
-
-
拓扑物态
-
贝里相位与陈数(量子霍尔效应)
-
拓扑绝缘体边缘态(Dirac方程解)
-
第三卷:现代物理前沿
第7章 广义相对论与宇宙学
-
弯曲时空
-
测地线方程与引力红移(施瓦西解)
-
引力波探测(LIGO数据分析)
-
-
宇宙演化
-
FRW度规与哈勃定律(暗能量方程)
-
暴涨理论与CMB各向异性
-
第8章 量子场论与粒子物理
-
场论框架
-
标量场量子化(克莱因-戈登方程)
-
费曼规则与QED(电子-光子顶点)
-
-
标准模型
-
希格斯机制与质量生成(自发对称性破缺)
-
中微子振荡与马约拉纳费米子
-
第9章 凝聚态前沿
-
强关联系统
-
Hubbard模型与Mott绝缘体(高温超导)
-
分数量子霍尔效应(复合费米子)
-
-
非平衡统计
-
玻尔兹曼方程与输运(热电效应)
-
量子耗散(Caldeira-Leggett模型)
-
第四卷:应用物理与交叉学科
第10章 光学与量子技术
-
现代光学
-
超表面与变换光学(隐身 cloak 设计)
-
量子成像(关联光子对)
-
-
量子信息
-
量子比特与门操作(超导电路实现)
-
量子纠错(表面码理论)
-
第11章 核能与天体工程
-
核物理应用
-
裂变/聚变反应截面计算(托卡马克约束)
-
PET成像与放射性示踪
-
-
空间技术
-
轨道力学(霍曼转移)
-
引力辅助与深空探测
-
第12章 计算物理与AI
-
数值方法
-
分子动力学(Lennard-Jones势模拟)
-
蒙特卡洛在统计物理中的应用(Ising模型)
-
-
机器学习辅助
-
神经网络求解薛定谔方程
-
材料发现的高通量计算
-