To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 41968 | Accepted: 22303 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
小结:
我开始是确定两个点作为一个区域的对角线的两个点,然后通过逐次通过面积的加减来求出相应的解,然而写着写着就发现不对了,感觉好像时间复杂度为n*4,当n为100的时候感觉就有TLE的危险,果断就放弃了(说实话,后面感觉好像这样也可以的...),然后百思不得其解,就参考了前辈的做法....顿时感觉自己好没用....
以下是AC代码:
#include<stdio.h> #include<string.h> #include<stdlib.h> int num[110][110]; int temp[110]; int n; int find(int *a) { int sum=0; int max=0; for(int i=1;i<=n;i++) { sum+=a[i]; if(sum<0) sum=0; max=max>sum?max:sum; } return max; } int main() { int max; while(~scanf("%d",&n)) { for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { scanf("%d",&num[i][j]); } } for(int i=1;i<=n;i++) { memset(temp,0,sizeof(temp)); for(int j=i;j<=n;j++) { for(int k=1;k<=n;k++) temp[k]+=num[j][k]; int t=find(temp); max=max>t?max:t; } } printf("%d\n",max); } return 0; }