POJ 1050 To the Max【题解】

一道非常经典的DP题目,适合我这种 D P 蒟 蒻 \red{DP蒟蒻} DP

题目大意:给定一个矩阵,其元素均为 [ − 127 , 127 ] [-127,127] [127,127]之间的整数,求它的最大子矩阵。
解题思路:

看到网上很多的博客(几乎所有的)都是用的把问题压缩成一维动态规划来做,其实大可不必。可以直接在原矩阵上进行状态转移。我们采用:
F [ i , j ] ; i ∈ [ 1 , N ] , j ∈ [ 1 , n ] F[i,j];i\in[1,N],j\in[1,n] F[i,j];i[1,N],j[1,n]
来表示矩阵 A i , j A_{i,j} Ai,j的最大子矩阵,那么很容易看出,初始状态为 F [ 1 , 1 ] F[1,1] F[1,1],目标状态为 F [ n , n ] F[n,n] F[n,n].现在来思考如何定义状态转移方程,稍加思考我们可以发现一个矩阵 A i , j A_{i,j} Ai,j的最大子矩阵一定为:
{ A i − 1 , j 的 最 大 子 矩 阵 A i , j − 1 的 最 大 子 矩 阵 以 a [ i , j ] 为 右 下 角 的 矩 阵 \begin{cases} A_{i-1,j}的最大子矩阵\\ A_{i,j-1}的最大子矩阵\\ 以a[i,j]为右下角的矩阵 \end{cases} Ai1,jAi,j1a[i,j]
前两个状态我们可以进行 O ( 1 ) O(1) O(1)的转移,最后一种状态我们可以在输入矩阵的时候预处理出它的二维前缀和 S [ i , j ] S[i,j] S[i,j],就可以扫描一遍 O ( n 2 ) O(n^2) O(n2)的转移了。

总复杂度为 O ( n 4 ) O(n^4) O(n4),由于数据范围不超过一百,可以稳稳地过。

A C   C o d e : \purple{AC\space Code:} AC Code:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,a[150][150],s[150][150];
int f[150][150];
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		{
			cin>>a[i][j];
			s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
		}
	f[1][1]=s[1][1];
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			if(i==1&&j==1) continue;
			int s1=max(f[i-1][j],f[i][j-1]);
			int s2=-0x3f;
			for(int a=1;a<=i;a++)
			{
				for(int b=1;b<=j;b++)
				{
					int s3=s[i][j]-s[a-1][j]-s[i][b-1]+s[a-1][b-1];
					s2=max(s2,s3);	
				}	
			}
			f[i][j]=max(s1,s2);	
		}	
	} 
	cout<<f[n][n]<<endl;
	return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值