【机器学习】期末大作业——贝叶斯模型分辨垃圾邮件

朴素贝叶斯分类器是一种基于贝叶斯定理的简单概率分类器,它在多种领域,包括文本分类、垃圾邮件检测、医学诊断等,都有广泛的应用。朴素贝叶斯分类器之所以被称为“朴素”,是因为它假设特征之间相互独立,即一个特征的出现不依赖于其他特征的出现。这个假设在实际应用中往往不成立,但朴素贝叶斯分类器仍然能够提供良好的性能,特别是在文本数据上。

贝叶斯定理

朴素贝叶斯分类器的核心是贝叶斯定理,该定理描述了条件概率的关系,可以表示为:

[P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}]

其中,(P(A|B)) 是在给定B发生的条件下A发生的概率,(P(B|A)) 是在给定A发生的条件下B发生的概率,(P(A)) 和 (P(B)) 分别是A和B发生的边缘概率。

工作原理

在分类问题中,我们使用朴素贝叶斯分类器来计算给定特征集(X)下,样本属于某个类别(C_k)的概率(P(C_k|X))。根据贝叶斯定理,这个概率可以表示为:

$$
[P(C_k|X) = \frac{P(X|C_k) \cdot P(C_k)}{P(X)}]
$$

由于我们的目标是找到概率最大的类别,分母(P(X))对于所有类别是常数,因此在比较不同类别的概率时可以忽略。因此,我们只需要计算分子的部分。

在朴素贝叶斯的框架下,假设所有特征(x_i)相互独立,因此联合概率(P(X|C_k))可以分解为各个特征概率的乘积:

[P(X|C_k) = \prod_{i} P(x_i|C_k)]

最后,我们选择使(P(C_k|X))最大化的类别(C_k)作为样本的预测类别。

类型

朴素贝叶斯分类器有几种不同的变体,主要区别在于它们假设数据遵循的概率分布:

  • 高斯朴素贝叶斯:假设每个类别中的特征遵循高斯分布(正态分布)。

  • 多项式朴素贝叶斯:适用于特征表示为计数的情况,如文本分类中的词频。

  • 伯努利朴素贝叶斯:适用于二元(布尔值)特征的情况。

应用

朴素贝叶斯分类器由于其简单性、效率和良好的性能,在实际应用中非常受欢迎。它特别适用于维度高、样本量大的数据集。尽管“朴素”的独立性假设在许多情况下不成立,但朴素贝叶斯分类器在实践中仍然表现出了令人惊讶的鲁棒性和有效性。

以下使用贝叶斯模型来识别垃圾邮件,并且进行预测识别的源代码:

 

  • import warnings:这一行导入了Python标准库中的warnings模块,这个模块提供了管理和控制警告信息的功能。
  • warnings.filterwarnings("ignore"):这一行调用了filterwarnings函数,并传递了一个参数"ignore"。这意味着所有的警告信息都将被忽略,即它们不会被打印到控制台。这在某些情况下很有用,比如当你知道某些警告信息是无害的,或者你不希望用户看到这些可能令人困惑的信息时。

这段代码使用了Scikit-learn(一个流行的机器学习库)中的LabelEncoder来对df1 DataFrame中的'Spam or Ham'列进行编码。LabelEncoder是一个用于将标签值统一转换成从0到n_classes-1的整数的工具,这在处理分类数据时非常有用,特别是在机器学习模型训练之前的数据预处理阶段。

  • from sklearn.preprocessing import LabelEncoder:这行代码从sklearn.preprocessing模块导入LabelEncoder类。

  • encoder = LabelEncoder():这行代码创建了LabelEncoder类的一个实例,命名为encoder

  • df1['Spam or Ham'] = encoder.fit_transform(df1['Spam or Ham']):这行代码应用encoder对象的fit_transform方法到df1 DataFrame中的'Spam or Ham'列上。fit_transform方法首先将文本标签(如“Spam”和“Ham”)拟合到编码器上,然后将它们转换成整数标签。转换的结果被用来替换原来的'Spam or Ham'列。

具体来说,如果'Spam or Ham'列中只包含两个标签,比如“Spam”和“Ham”,那么LabelEncoder可能会将“Spam”编码为0,将“Ham”编码为1(或相反,具体取决于它们在数据中出现的顺序)。这样,原始的文本标签就被转换成了模型可以直接处理的数值标签。

这个过程是机器学习数据预处理的一个重要步骤,因为大多数机器学习算法在训练时需要数值输入,而不能直接处理文本标签。

  • from sklearn.model_selection import train_test_split:这行代码从scikit-learn的model_selection模块导入train_test_split函数。scikit-learn是Python的一个主要机器学习库,提供了广泛的算法和工具,包括数据分割工具。

  • X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=0):这行代码使用train_test_split函数将数据集分割为训练集和测试集。

    • Xy是待分割的数据,其中X包含特征变量,y包含目标变量(即模型要预测的变量)。
    • test_size=0.20指定了测试集的比例为20%,意味着80%的数据将用作训练集,20%的数据将用作测试集。
    • random_state=0是一个随机数种子,用于确保每次分割时都能得到相同的结果,这有助于实验的可重复性。
  • X_trainy_train是训练集的特征和标签,X_testy_test是测试集的特征和标签。

一旦完成了数据的分割,你就可以选择一个机器学习模型来使用X_trainy_train进行训练了。训练完毕后,使用X_test来进行预测,并通过比较预测结果与y_test来评估模型的性能。模型的选择取决于你的具体任务(如分类、回归等)和数据的特点。常见的模型包括线性回归、逻辑回归、决策树、随机森林、支持向量机、神经网络等。

random_state是在使用需要进行随机处理的算法时用来设置“种子”的一个参数。在计算机程序中,随机数生成器实际上是伪随机的,这意味着它们需要一个初始值来开始生成序列,这个初始值就是所谓的“种子”。如果你使用相同的种子值,无论运行多少次,随机数生成器都将产生相同的序列。

在机器学习和数据分析的上下文中,random_state参数的作用包括但不限于:

  • 确保结果的可重现性:当你设置了random_state的值,在不同时间或在不同的环境中运行相同的代码,可以得到完全相同的结果。这对于实验的可重复性和结果的验证非常重要。
  • 控制随机过程:在数据分割(如train_test_split)、模型训练(如随机森林和梯度提升树等算法)等过程中,random_state可以控制算法的随机性。这意味着,你可以通过设置特定的random_state值来影响数据的随机分割方式、模型初始化参数的随机选择等。

例如,在使用train_test_split函数进行数据分割时,random_state确保了每次分割数据时,如果你设置了相同的种子值,那么无论运行多少次代码,你都会得到相同的训练集和测试集。这在比较不同模型或参数调优时非常有用,因为它确保了所有比较都是公平和一致的。

如果你不设置random_state,或者设置为None,每次运行代码时随机数生成器都会选择一个新的种子值,这可能导致每次得到的结果都有所不同。

总的来说,random_state是一个非常有用的工具,用于确保你的数据处理和模型训练过程是可重复的,同时也使得实验结果更加稳定可靠。

 

  • 9
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值