sales_record ={'price':3.24,'num_items':4,'person':'Chris'}
sales_statement ='{} bought {} item(s) at a price of {} each for a total of {}'print(sales_statement.format(sales_record['person'],
sales_record['num_items'],
sales_record['price'],
sales_record['num_items']*sales_record['price']))
读写CSV文件
import csv
%precision 2withopen('mpg.csv')as csvfile:
mpg =list(csv.DictReader(csvfile))
mpg[:3]# The first three dictionaries in our list.
len(mpg)#column names of our csv.
mpg[0].keys()#the average cty fuel economy across all carssum(float(d['cty'])for d in mpg)/len(mpg)
#set,返回唯一值
cylinders =set(d['cyl']for d in mpg)
#按照油缸数,求城市内平均每加仑汽油行驶的公里数
CtyMpgByCyl =[]for c in cylinders:# iterate over all the cylinder levels
summpg =0
cyltypecount =0for d in mpg:# iterate over all dictionariesif d['cyl']== c:# if the cylinder level type matches,
summpg +=float(d['cty'])# add the cty mpg
cyltypecount +=1# increment the count
CtyMpgByCyl.append((c, summpg / cyltypecount))# append the tuple ('cylinder', 'avg mpg')
CtyMpgByCyl.sort(key=lambda x: x[0])
CtyMpgByCyl
时间
import datetime as dt
import time as tm
#返回距离1970年1月1日的时间(以秒为单位)
tm.time()#将时间戳转换为日期
dtnow = dt.datetime.fromtimestamp(tm.time())
dtnow
#日期的属性
dtnow.year, dtnow.month, dtnow.day, dtnow.hour, dtnow.minute, dtnow.second # get year, month, day, etc.from a datetime#时间增量(timedelta)是表示两个日期之间差异的持续时间。
delta = dt.timedelta(days =100)# create a timedelta of 100 days
delta
#获取今天日期
today = dt.date.today()#datetime.date(2019, 4, 24)#100天前日期
today - delta # the date 100 days ago#datetime.date(2019, 1, 14)
today > today-delta # compare dates