斐波那契数列递归与非递归的实现

斐波那契数列是C语言中一个经典问题,它指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(≥ 2,∈ N*),在这里我们要讲解它的两种实现方法。

1.斐波那契的递归

int Fib1(int n){//递归的实现 
	if(n==1)return 1;
	if(n==2)return 1;
	return Fib1(n-1)+Fib1(n-2);//递推方程 
}

在写的时候,要注意斐波那契的初始条件,以及递推方程的限制条件。

2.斐波那契的非递归

int Fib2(int n){//非递归的实现 
	if(n==1)return 1;
	if(n==2)return 1;
	int  f1,f2,f3;
	f1=1,f2=1;
	for(int i=3;i<=n;i++){
		f3=f2+f1;
		f1=f2,f2=f3;
	}
	return f3;
}

斐波那契的非递归是基于数列的基本规律来实现,在解决类似问题时也可以仿照着完成。

完整代码如下:

#include<stdio.h>
int Fib1(int n){//递归的实现 
	if(n==1)return 1;
	if(n==2)return 1;
	return Fib1(n-1)+Fib1(n-2);//递推方程 
}
int Fib2(int n){//非递归的实现 
	if(n==1)return 1;
	if(n==2)return 1;
	int  f1,f2,f3;
	f1=1,f2=1;
	for(int i=3;i<=n;i++){
		f3=f2+f1;
		f1=f2,f2=f3;
	}
	return f3;
}
int main(){
	int n;
	scanf("%d",&n);
	printf("%d",Fib2(n));
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瑟士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值