斐波那契数列的递归、非递归实现

斐波那契数列的递归、非递归实现

斐波那契数列介绍

斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)1

F ( n ) = { 1 , n=0,1 F ( n − 1 ) + F ( n − 2 ) , n>1 F(n)= \begin{cases} 1,& \text{n=0,1}\\ F(n-1)+F(n-2),& \text{n>1} \end{cases} F(n)={1,F(n1)+F(n2),n=0,1n>1

斐波那契数列C语言实现

#include<stdio.h> 

// 递归 
int Fib1(int n){
	if(n==1||n==2)
		return 1;
	else
		return Fib1(n-1)+Fib1(n-2);
}

// 非递归
int Fib2(int n) {
	int num1=1;
	int num2=1;
	int t=0;
	int i;
	if(n<1)	return 1;
	else
		for(i=0;i<n-2;i++)
		{	
			t=num1+num2;
			num1=num2;
			num2=t;
		}
	return t;
}

int main(){
	int n;
	scanf("%d",&n);
	printf("ret1=%d\n",Fib1(n));
	printf("ret2=%d\n",Fib2(n));
	return 0;
}

时间复杂度

  • 递归算法: O ( 2 n ) O(2^n) O(2n)
  • 非递归算法: O ( n ) O(n) O(n)

  1. 斐波那契额数列百度百科 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值