斐波那契数列的递归、非递归实现
斐波那契数列介绍
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)1
F ( n ) = { 1 , n=0,1 F ( n − 1 ) + F ( n − 2 ) , n>1 F(n)= \begin{cases} 1,& \text{n=0,1}\\ F(n-1)+F(n-2),& \text{n>1} \end{cases} F(n)={1,F(n−1)+F(n−2),n=0,1n>1
斐波那契数列C语言实现
#include<stdio.h>
// 递归
int Fib1(int n){
if(n==1||n==2)
return 1;
else
return Fib1(n-1)+Fib1(n-2);
}
// 非递归
int Fib2(int n) {
int num1=1;
int num2=1;
int t=0;
int i;
if(n<1) return 1;
else
for(i=0;i<n-2;i++)
{
t=num1+num2;
num1=num2;
num2=t;
}
return t;
}
int main(){
int n;
scanf("%d",&n);
printf("ret1=%d\n",Fib1(n));
printf("ret2=%d\n",Fib2(n));
return 0;
}
时间复杂度
- 递归算法: O ( 2 n ) O(2^n) O(2n)
- 非递归算法: O ( n ) O(n) O(n)