几百块的投影仪靠谱吗?难道没有便宜又好用的吗?

目前市面上投影仪琳琅满目,价位也是参差不齐,很多人都觉得有便宜的就没必要买贵的,东西都没差。那么,几百块的投影仪靠谱吗?我们从三个方面来分析:

  一、投影仪镜头

  一般投影仪镜头都是使用光学玻璃制作,为了使透光性能更好,中高端的机器会在镜头表面镀膜,防止因为镜头受损。而有的也会采用树脂镜片,即我们都知道的塑胶材质。相比玻璃镜头,塑胶耐热性远远劣于玻璃镜头,在投影高温下很容易造成画面虚焦问题。为什么不只用优质的玻璃镜头呢?毫无疑问是因为“成本”。

  二、虚标的参数

  参数的虚标在各行各业都有存在,为什么没有人举报呢?因为产品从研发到实测参数的划定是有一定误差存在的,这个误差范围在20%内。作为家用的投影仪亮度流明在1000-2000ANSI左右,如果你看到3000流明的机器还卖几百块钱,坑这么明显你还跳吗?

  三、元件配件

新闻上报道常因为产品使用低廉的元件或产品电源线等配件导致消费者使用过程中触电、起火、爆炸等事故,足够让人惊心动魄。500元的家用投影仪就像一个玩具,能买到,但绝不会有多好的观影体验。消费者的眼睛是雪亮的,那为什么销量数据还是这么高呢?不可言喻。

说了这么多其实是想告诉大家,“一分钱,一分货”是一个亘古不变的道理,低价投影机并不会给你带来想象中的快乐,反而会在观影时给你带来很多烦恼。投影仪这个行业,经过近二十年的沉淀,较好的成像技术和亮度,慢慢下放到了千元的消费层级。耳熟能详的当贝、爱普生、米家、海信、明基、宏碁等品牌,如今都有涉猎五千元以下的产品线。各个品牌相应的产品,使用体验也是越来越好。

比如当贝X3 Pro采用了和当贝X3一样的ALPD激光技术,在中长焦4K投影仪中,亮度遥遥领先,这种光源的优势是“亮度高、色域宽、寿命长、能耗低、对比度更高,画质细节更好”,是投影技术的发展趋势。并且,激光光源的使用寿命更长,能达到13年以上,完全可以当电视使用。据了解,当贝X3是2021年度保值产品,而作为当贝X3的升级款,当贝X3 Pro的保值率肯定更高,到时想转手的话,也能卖出一个好的价格。

再比如极米H3S。在基础的硬件方面,极米H3S 的处理器选用了旗舰级别的MT9669芯片,搭配4GB+64GB 的存储搭配,最大程度地确保了操作的流畅性。

有了如此优秀的芯片加持,极米H3S的易用性也妥妥提升;加入包括“全自动梯形校正”“画面智能避障”“画幕自动对齐”等智能实用的功能,解放用户双手。尤其是大多数的情况下,用户往往不能一次性就把投影机放在居中正投的位置,而“全自动梯形校正”在开机后就会自行启动,全程无虑片刻即成。

在画质方面,极米H3S拥有2200ANSI高亮度,并支持1080P,最高可兼容4K片源,显著提升了画面的明暗细节。得益于X-VUE 2.0 画质引擎的搭载,支持AI画质增强技术,令画质更加细腻。此外,H3S还配置“环境光自适应”功能,当环境光源发生变化时,屏幕也会对应调整。白天的画面更加明亮,夜晚的画面也更加柔和。

<think>嗯,用户的问题是关于计算机视觉中的相机坐标系,特别是Z轴是否表示目标物在光轴上的投影距离。我需要仔细分析这个问题,并确保回答准确。 首先,我应该回顾相机坐标系的定义。根据引用[1]、[2]、[3],相机坐标系的原点位于相机的光心,Z轴沿着光轴方向指向正前方。X轴和Y轴分别与像面平行。这里的Z坐标通常代表目标到光心(原点)的直线距离,而不是投影距离。 接下来,投影距离可能指的是目标在Z轴方向上的坐标值,也就是沿光轴的距离。但用户提到的“投影距离”需要明确。在正向投影过程中,三维点被映射到像平面,Z坐标确实影响投影位置。例如,根据引用[4]和[5],投影方程涉及Z坐标,如x = f*Xc/Zc,这里Zc是目标到光心沿光轴的距离。 用户可能混淆了“投影到光轴的距离”和“沿光轴的坐标值”。需要指出Zc是沿光轴的直线距离,而投影到光轴的距离可能被误解为在光轴上的垂足距离,但这其实就是Zc本身。因此,Z坐标确实表示目标沿光轴到光心的距离,也就是投影距离。 最后,要确保引用正确,并举例说明。例如,当Zc增大,目标离相机更远,图像中的投影会更小。这验证了Zc的作用。总结时强调Z轴坐标的含义,并澄清可能的误解。</think>在计算机视觉的相机坐标系中,**$Z$轴坐标表示目标物到相机光心(原点)沿光轴方向的直线距离**,而非投影到光轴的垂直距离。具体分析如下: ### 1. 相机坐标系的定义 根据引用[1][2][3],相机坐标系以光心为原点: - $X_c$轴:与像平面水平边平行,指向右侧 - $Y_c$轴:与像平面垂直边平行,指向下方 - $Z_c$轴:沿光轴方向,指向相机正前方 目标物坐标 $(X_c, Y_c, Z_c)$ 中,$Z_c$ 直接表示目标到光心沿光轴的欧氏距离,单位通常为米(m)或毫米(mm)[^3]。 ### 2. 投影关系的验证 在正向投影过程中(三维到二维的映射),投影公式为: $$ \begin{cases} x = f \cdot \frac{X_c}{Z_c} \\ y = f \cdot \frac{Y_c}{Z_c} \end{cases} $$ 其中 $f$ 为焦距[^2][^5]。这里 $Z_c$ 作为分母,直接影响图像平面上的投影坐标 $(x,y)$。若目标沿光轴移动(即仅 $Z_c$ 变化),其在像平面的投影位置会按比例缩放。 ### 3. 几何意义图解 ``` 目标物位置 * | \ | \ Z_c(沿光轴距离) | \ 光心 O-------Z轴 ``` $Z_c$ 是目标物到光心的直线距离,而非投影到其他平面的距离。若考虑“光轴上的投影距离”,由于目标物在光轴上的投影就是其自身位置,因此该距离与 $Z_c$ 相等。 ### 4. 应用场景验证 在立体视觉中,通过多视角的 $Z_c$ 值计算深度图时,正是利用了 $Z_c$ 的几何意义[^4]。例如自动驾驶中,$Z_c$ 增大表示车辆距离障碍物更远,这与实际空间关系一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值