题目描述:
Kiki知道什么叫杨辉三角之后对杨辉三角产生了浓厚的兴趣,他想知道杨辉三角的前n行,请编程帮他解答。杨辉三角,本质上是二项式(a+b)的n次方展开后各项的系数排成的三角形。其性质包括:每行的端点数为1,一个数也为1;每个数等于它左上方和上方的两数之和。
输入描述:
第一行包含一个整数数n。(1<=n<=30)
输出描述:
包含n行,为杨辉三角的前n行,每个数输出域宽为5。
示例
输入
6
输出
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
分析:
从上面可以看出,最后算出杨辉三角形的话,其实最终就是把数据存放到一个二维数组里面去,n行同时也是n列。同时我们可以看出上面的规律。
思想一:
也就是二维数组的“第一列”是全部赋值为“1”。与“列”相等的“行”也全部是赋值为“1”,比如说:第一列第一行[1][1],第二列第二行[2][2],第三列第三行[3][3],…以此类推,满足条件的那个数(也就是)“行”那么就赋值为“1”。这是一种思想
实现代码:
if (j==0) //列是第0列的时候赋值为1
arr[i][j] = 1;
if (i==j) //对角线相等的情况,也就是行和列相等的情况下。比如:第二行第二列,第三行第三列...以此类推
arr[i][j] = 1;
思想二:
还有一种就是说“每行“的第一个数跟最后一个数都赋值为“1”这是另一种思想。
实现代码:
arr[i][0] = 1;
arr[i][i] = 1;
具体实现:
#include <stdio.h>
int main()
{
int n = 0;
int arr[30][30] = {0};
scanf("%d", &n); //1、第一行输入,要打印的行数
int i = 0;
int j = 0;
//2、内容的计算与输入
for (i=0; i<n; i++) //行
{
for (j=0; j<n; j++) //列
{
//思想二:先将杨辉三角每行的第一个和最后一个赋值为1
arr[i][0] = 1;
arr[i][i] = 1;
//思想一:
// if (j==0) //列是第0列的时候赋值为1
// arr[i][j] = 1;
// if (i==j) //对角线相等的情况,也就是行和列相等的情况下。比如:第二行第二列,第三行第三列...以此类推
// arr[i][j] = 1;
if (i>=2 && j>=1)
{
//上一行上一列的那个数 + 上一行这一列的那个数。
arr[i][j] = arr[i-1][j-1]+arr[i-1][j];
}
}
}
//3、遍历输出二维数组内容
for (i=0; i<n; i++) //行
{
for (j=0; j<=i; j++) //列
{
printf("%5d" ,arr[i][j]); //这里使用了五位的域宽,所以会缩进五个空格
}
printf("\n");
}
return 0;
}