一、题目
描述
KiKi知道什么叫杨辉三角之后对杨辉三角产生了浓厚的兴趣,他想知道杨辉三角的前n行,请编程帮他解答。杨辉三角,本质上是二项式(a+b)的n次方展开后各项的系数排成的三角形。其性质包括:每行的端点数为1, 一个数也为1;每个数等于它左上方和上方的两数之和。
输入描述:
第一行包含一个整数数n。 (1≤n≤30)
输出描述:
包含n行,为杨辉三角的前n行,每个数输出域宽为5。
示例1
输入:
6
输出:
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1
二、思路解析
这道题也是一道简单的动态规划一类题,但是代码实现有点小难,且听罗根我娓娓道来。
首先,我们通过 Scanner 从标准输入读取一个整数 n,表示要输出杨辉三角的前 n 行。
创建一个二维数组 dp,dp[i][j] 表示杨辉三角中第 i 行第j列的数值。
初始化第一行的值为 1,即 dp[1][1] = 1。
使用动态规划的思想,依次计算每一行的值,前面的推导,我们可以知道,当前行的每个位置的值等于上一行对应位置和左上方位置的值之和。
输出的时候,就到了我前面说的,代码实现的难点了。
杨辉三角,还要控制每个数的输出域宽为 5,我的做法是借助 StringBuffer 来插入空格。
具体实现请看下面代码👇
三、完整代码
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[][] dp = new int[n + 1][n + 1];
dp[1][1] = 1;
for(int i = 2; i <= n; i++){
for(int j = 1; j <= i; j++){
dp[i][j] = dp[i - 1][j] + dp[i - 1][j - 1];
}
}
for(int i = 1; i <= n; i++){
for(int j = 1; j <= i; j++){
StringBuffer ret = new StringBuffer();
int len = Integer.toString(dp[i][j]).length();
for(int k = 0; k < 5 - len; k++){
ret.append(" ");
}
System.out.print(ret.toString() + dp[i][j]);
}
System.out.println();
}
}
}
以上就是本篇博客的全部内容啦,如有不足之处,还请各位指出,期待能和各位一起进步!