【GeoDa使用】空间自相关分析操作

使用 GeoDa 软件进行空间自相关分析


双击打开 GeoDa 软件

选择 .shp 文件

导入文件

 空间权重矩阵(*.gal / *.gwt)是进行任何空间分析的前提

构建空间权重矩阵

空间权重矩阵(Spatial Weights Matrix) 是一个用来描述空间对象之间相互关系的矩阵。

它反映了地理单位之间“邻接”或“距离接近”关系,是进行空间计量分析的基础。

空间权重矩阵是一个用来表示地理单元之间“谁和谁是邻居”的表格,它决定了你在进行空间分析时,哪些单元会被当作“周围环境”来计算

定义空间邻居关系

点---基于距离

Arc Distance基于球面经纬度,考虑地球曲率

中文名称说明使用场景
Euclidean Distance欧氏距离最常见的直线距离计算方法,即“勾股定理”形式,单位与坐标系统一致。
例如: √[(x₂ - x₁)² + (y₂ - y₁)²]
坐标为投影坐标(如米、千米),一般城市区域或栅格数据分析

Arc Distance

(mi)

弧线距离(英里)基于地球球面模型计算两地之间的球面弧线距离,单位为英里全球或跨区域分析,使用经纬度坐标数据

Arc Distance

(km)

弧线距离(千米)同上,单位为千米全球范围分析,常用于交通、气候空间数据分析

点击创建,选择保存的文件位置

创建成功后就可以关闭了


全局空间自相关

在菜单栏点击:

 

选择你想分析的变量(如:CI)

勾选使用的权重矩阵(默认的话会自动使用)

点击 ,软件会生成:

Moran’s I 值

Z-score 和 p 值(显著性)

散点图(Moran Scatter Plot)

📌 结果解读:

Moran’s I > 0:正自相关(聚集)

Moran’s I < 0:负自相关(离散)

Z 值越大,p 值越小 → 空间聚集越显著

局部空间自相关

菜单栏点击:

同样选择你分析的变量

使用默认的空间权重矩阵

点击 输出内容:

红色:High-High 聚集(热点)

蓝色:Low-Low 聚集(冷点)

粉红:High-Low(高值被低值包围)

浅蓝:Low-High(低值被高值包围)

灰色:不显著区域(p > 0.05)

选中高亮的数量

shift和鼠标配合

右下角可以看到选中数量

上面4步还要重做一下

点击保存,设置好后 


空间权重矩阵(Spatial Weight Matrix)是空间计量分析和空间数据建模中的核心工具,用来描述一个空间单元(比如一个区域、城市、网格等)与其他空间单元之间的“相邻”或“关联”关系

空间权重矩阵是一个 n × n 的矩阵,n 表示空间单元的数量,矩阵中的每一个元素 wij表示第 i 个单元与第 j 个单元之间的空间关系强度。

  • 如果 wij=1,表示 i 与 jj是邻居;

  • 如果 wij=0,表示两者不是邻居;

  • 更复杂的形式中,wij可以是两个单元之间的距离的函数,比如反比距离 wij=1/dij

常见构建方法

邻接矩阵(Binary contiguity matrix)
  • 仅表示是否相邻,常见的有:

    • Rook 邻接:四邻域(上下左右相邻才算邻居);

    • Queen 邻接:八邻域(包括对角线)

距离衰减矩阵(Distance-based weight)

根据单元之间的实际距离构建,距离越远,权重越小

一般 α=1 或 2;d是距离

距离阈值:超出距离就设为 0

准化权重矩阵

对每一行做归一化,

可以防止单位之间邻居数量不一致带来的影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识快到我脑里来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值