目录
(一)平稳性检验
平稳性检验是时间序列分析中的一个重要步骤,主要用于判断时间序列数据的统计特性(如均值和方差)是否随时间变化
方法一:图检验
• 时序图检验
• 自相关图检验
方法二:构造检验统计量进行假设检验(之后的文章详细介绍)
• 单位根检验
平稳性的时序图检验
平稳时间序列具有常数均值和方差。这意味着平稳序列的 时序图应该显示出该序列始终在一个常数值附近波动,而且波动的范围有界的特点。
时序图:绘制时间序列的图形,通常以时间为横轴,数据值为纵轴。
观察要点:
- 趋势:若图中存在明显的上升或下降趋势,则可能是非平稳的。
- 季节性:如果数据在特定时间间隔内表现出规律性的波动,这表明可能存在季节性。
- 波动性:观察数据的波动幅度是否随时间变化,若波动幅度增大或减小,则可能是非平稳的。
平稳性的自相关图检验
自相关图是一一个平面二维坐标悬垂线图.横坐标表示延迟时期数,纵坐标表示自相关系数.悬垂线表示自相关系数的大小;通过分析序列与其滞后值之间的相关性来判断评估时间序列平稳性。
自相关的基本概念
自相关:自相关是时间序列中当前值与其过去值之间的相关性。它量化了时间序列数据在不同时间点上的依赖性。
自相关系数(ACF):表示时间序列在不同滞后数下的相关程度。自相关系数通常记作 ρ(k),其中 k 是滞后数。