在数字化转型的大背景下,在软件定义一切的趋势下,软件测试人员需要接触和理解的信息越来越多,并呈现加速增长的态势。需求越来越大,交付周期越来越短,受制于体力和能力限制,测试人员的效率和质量难以同步提升,同时大型企业中业务流程设计和信息化分工也是阻碍测试人员继续学习和探索应用的壁垒。
将大模型用于软件测试领域可以实现更高的测试覆盖率,减少不稳定的测试并加快缺陷修复过程。这有助于提高测试人员的测试质量和效率,加快缺陷修复,并确保遵守企业内外部的软件开发标准。
企业应积极探索大模型在测试领域的应用,但短期内大模型只能是辅助人工,测试工作仍然需要人的参与,创建有效的提示词并对输出结果进行检查。此外,大模型与各种开发和测试工具的集成仍在不断改进。
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
以下是利用大模型可以赋能质量和测试活动的场景:
• 基于需求文档、用户故事或API文档生成测试用例,提高测试的覆盖率和效率,可以要求特定格式如“Given-When-Then”,但是大模型当前以Gherkin编写的场景文件还不能完全按照“Given-When-Then”格式。
• 通过创建一个适当的测试计划来实现测试用例优化,在需求覆盖最大的同时最小化测试数量。
• 编写自动化测试脚本,用于单元、API和UI的功能性和非功能性检查及评估,但是可能需要其他平台或工具执行自动化测试脚本。
• 大模型可以对测试结果分析,例如比较不同版本的用户故事、代码文件和测试结果以寻找潜在风险和原因,以及对不稳定测试用例和缺陷进行分级。
• 大模型可以生成测试数据用来补充数据库或驱动测试用例。这些数据可以是常见的销售数据、用户数据、库存信息(如产品SKU)或具有真实地址的位置数据。
• 将自动化测试用例从一个框架转换到另一个框架长期来看有可能实现,但需要更多的技术迭代。
• 将测试结果根据输入的简单数据表形式自动汇总成测试报告。
• 通过将历史数据输入给大模型并利用这些数据确定测试用例的优先级和持续验证,可以加快用户验收测试过程。
• 确定可能的性能指标和基准,为类似应用提供参考。
• 可以创建代表开源混沌工程工具(如Chaos Mesh)实验的YAML文件。
那么,如何学习大模型 AGI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
-END-
👉AGI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓