2025年3月25日,AI开发领域迎来革命性突破!DeepSeek与Dify的深度集成,以零代码+高性能+低成本三重优势,彻底颠覆传统AI应用开发模式。本文深度解析其核心亮点,并对比传统开发框架与同类低代码平台,揭示其颠覆性价值。
Dify 作为同样开源的生成式 AI 应用开发平台,能够帮助开发者基于 DeepSeek 大模型快速开发出更加智能的 AI 应用,你可以在 Dify 平台内获得以下开发体验:
-
可视化构建: 通过可视化编排界面,3 分钟搭建基于 DeepSeek R1 的 AI 应用
-
知识库增强: 关联内部文档,开启 RAG 能力并构建精准问答系统
-
工作流扩展: 提供多种第三方工具插件、可视化拖拽式编排应用功能节点,实现复杂业务逻辑
-
数据洞察力: 内置总对话数、应用使用用户数等数据监控模块,支持与更加专业的监控平台集成 …
本文将详解 DeepSeek API 与 Dify 的集成步骤,助你快速实现两大核心场景:
-
智能对话机器人开发: 直接调用 DeepSeek R1 的思维链推理能力
-
知识增强型应用构建: 通过私有知识库实现精准信息检索与生成
DeepSeek×Dify核心优势
- 零代码开发,3分钟搭建智能应用
-
通过Dify可视化界面,开发者仅需配置API密钥、选择模型(如DeepSeek-R1),即可快速生成聊天机器人、知识库问答等应用,开发效率提升80%。
-
技术突破:支持Lambda表达式与动态表名,适配复杂业务逻辑,无需编写SQL或XML代码。
- 多轮推理能力碾压同级
-
DeepSeek-R1模型在数学推理(MATH 500第一)、代码生成(LiveCodeBench第一)等场景表现卓越,结合Dify的思维链(Chain-of-Thought)功能,实现复杂问题拆解与逐步解答。
-
实测对比:处理多步骤逻辑问题时,响应速度比传统RPA+规则引擎方案快5-10倍。
- 知识增强型应用构建
-
通过RAG(检索增强生成)技术,关联企业私有网页(PDF/Word/数据库),提升回答准确性。例如金融场景中,合同条款解析准确率提升18%。
-
数据安全:支持本地私有化部署(Ollama+Docker),保障敏感数据不外泄。
- 成本优势显著
-
API成本:DeepSeek输入0.5元/百万tokens,输出8元/百万tokens,仅为GPT-4o的1/10。
-
部署成本:本地部署仅需1台RTX 3090服务器,硬件投入降低90%。
与传统框架对比
关键结论
-
效率碾压:零代码开发+高性能模型,适合快速迭代的中大型项目。
-
功能全面性:免费提供RAG、多轮推理等高级功能,而传统框架需付费插件。
-
安全合规:本地部署方案满足金融、医疗等行业数据隐私要求。
集成步骤
- 申请 DeepSeek API
- 注册 Dify
- 将 DeepSeek 接入至 Dify
访问 Dify 平台,点击右上角头像 → 设置 → 模型供应商,找到 DeepSeek,将上文获取的 API Key 粘贴至其中。点击保存,校验通过后将出现成功提示。
- 搭建 DeepSeek AI 应用
轻点 Dify 平台首页左侧的"创建空白应用",选择"聊天助手"类型应用并进行简单的命名。
选择 deepseek-reasoner
模型
配置完成后即可在聊天框中进行互动。
- 为 AI 应用启用文本分析能力
RAG(检索增强生成)是一种先进的信息处理技术,它通过检索相关知识,向 LLM 提供必要的上下文信息,融入 LLM 的内容生成过程,提升回答的准确性和专业度。当你上传内部文档或专业资料后,AI 能够基于这些知识提供更有针对性的解答。
将需要 AI 分析处理的文档上传至知识库中。为确保 DeepSeek 模型能够准确理解文档内容,建议使用"父子分段"模式进行文本处理 - 这种模式能够更好地保留文档的层级结构和上下文关系。
在 AI 应用的"上下文"内添加知识库,在对话框内输入相关问题。LLM 将首先从知识库内获取与问题相关上下文,在此基础上进行总结并给出更高质量的回答。
- 分享 AI 应用
构建完成后,你可以将该 AI 应用分享给他人使用或集成至其它网站内。
典型应用场景
- 智能客服系统
- 多轮对话处理用户投诉,自动关联知识库生成标准化回复,响应速度提升10倍。
- 金融风控分析
- 解析合同条款与交易流水,自动识别11类异常模式(如超期付款),生成可视化审计报告。
- 医疗知识库
- 结合电子病历与药品说明书,为医生提供精准诊疗建议,误诊率降低15%。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。