ZCMU-1149-分硬币

1149: Dividing coins

Time Limit: 1 Sec   Memory Limit: 128 MB
Submit: 46   Solved: 11
[ Submit][ Status][ Web Board]

Description

It's commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nickel, which was made of copper. They were both so eager to get it and the fighting was so fierce, they stretched the coin to great length and thus created copper-wire.


Not commonly known is that the fighting started, after the two Dutch tried to divide a bag with coins between the two of them. The contents of the bag appeared not to be equally divisible. The Dutch of the past couldn't stand the fact that a division should favour one of them and they always wanted a fair share to the very last cent. Nowadays fighting over a single cent will not be seen anymore, but being capable of making an equal division as fair as possible is something that will remain important forever...


That's what this whole problem is about. Not everyone is capable of seeing instantly what's the most fair division of a bag of coins between two persons. Your help is asked to solve this problem.


Given a bag with a maximum of 100 coins, determine the most fair division between two persons. This means that the difference between the amount each person obtains should be minimised. The value of a coin varies from 1 cent to 500 cents. It's not allowed to split a single coin.

Input

A line with the number of problems n, followed by n times:

  • a line with a non negative integer m (m<=100) indicating the number of coins in the bag
  • a line with m numbers separated by one space, each number indicates the value of a coin.

Output

The output consists of n lines. Each line contains the minimal positive difference between the amount the two persons obtain when they divide the coins from the corresponding bag.

Sample Input

2
3
2 3 5
4
1 2 4 6

Sample Output

0
1

【解析】
 今天有题是求镶嵌多边形的个数,这有道给你几个硬币叫你分成两堆使他们的差最小,其实之前我们就做过求最大,那么最小怎么求呢?可以看成一个背包问题,怎么放能使价值最大,容量自然是分成几个硬币总和的二分之一,这样的话我们可以直接用总和减去这个容量为二分之一的背包了,其实这个状态我们是要注意的,背包问题其实就是用当前的容量不断的和a[j-a[i]]+a[i]+比较我们可以让容量逐渐的减小然后看看哪一个时候价值比较大,背包问题大家可以百度一下。是个动态规划的问题。
#include<iostream>
#include<string>
#include<vector>
#include<cstdio>
#include<algorithm>
using namespace std;
int main()
{
   int t,n,m,sum,i,k,j;
   scanf("%d",&t);
   while(t--)
   {
       int a[1010]={0};
       int b[20000]={0};
       sum=0;
      scanf("%d",&n);
      for(i=1;i<=n;i++)
      {
          scanf("%d",&a[i]);
          sum+=a[i];
      }
      k=sum/2;
      for(i=1;i<=n;i++)
      {
          for(j=k;j>=a[i];j--)
          {
              if(b[j]<(b[j-a[i]]+a[i]))
                b[j]=b[j-a[i]]+a[i];
          }
      }
      sum=sum-(2*b[k]);
      if(sum<0)
        sum=-sum;
      printf("%d\n",sum);
   }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值