基于Pytorch的强化学习(DQN)之 Dueling Network

目录

1. 引言

2. 数学推导

2.1 最优价值函数

2.2 最优状态函数

2.3 优势函数

3. 网络结构

3.1 优势网络

 3.2 状态网络

 3.3 新的DQN


1. 引言

我们之前学习了许多DQN的优化技巧,现在我们再来看看一种有趣的DQN的优化:Dueling network

2. 数学推导

2.1 最优价值函数

我们之前已经学过了最优价值函数 Q^*(s,a)=\underset{\pi}{max}Q_{\pi}(s,a),这里的Q_{\pi}(s,a) 是动作价值函数,最优指的是对策略 \pi 求最优。

2.2 最优状态函数

类比于最优价值函数,我们给出最优状态函数的定义,我们对状态函数V_{\pi}(s)=\underset{a}{max}Q_{\pi}(s,a) 也关于 \pi 求最优便得到 V^*(s)=\underset{\pi}{max}V_{\pi}(s) ,它可以衡量当前局势的好坏。

2.3 优势函数

我们定义优势函数 A^*(s,a)=Q^*(s,a)-V^*(s),下面给出两个引理及其证明

  1. V^*(s)=\underset{a}{max}Q^*(s,a)Proof:\underset{a}{max}Q^*(s,a)=\underset{a}{max}\underset{\pi}{max}Q_{\pi}(s,a)=\underset{\pi}{max}\underset{a}{max}Q_{\pi}(s,a)=\underset{\pi}{max}V_{\pi}(s)=V^*(s)
  2. \underset{a}{max}A^*(s,a)=0 Proof:\underset{a}{max}A^*(s,a)=\underset{a}{max}Q^*(s,a)-\underset{a}{max}V^*(s)=V^*(s)-V^*(s)=0

通过移项和添项我们得到:Q^*(s,a)=A^*(s,a)+V^*(s)-\underset{a}{max}A^*(s,a) 

这给我们提供了一种新的DQN的构建方式,下面具体介绍用这个基于这个公式的神经网络Dueling network的具体结构。 

3. 网络结构

3.1 优势网络

我们用网络A^*(s,a;w^A)来近似 A^*(s,a),它输入当前状态,输出一个动作得分向量。注意优势网络输出的是一个向量

 

 3.2 状态网络

我们用网络V^*(s;w^V) 来近似 V^*(s) ,它输入当前状态,输出一个对当前局势的打分。注意状态网络输出的是一个实数而非向量。

 

 3.3 新的DQN

 我们用 Q^*(s,a;w)=A^*(s,a;w^A)+V^*(s;w^V)-\underset{a}{max}A^*(s,a;w^A)\qquad(w=(w^A,w^V))

 来近似 Q^*(s,a)=A^*(s,a)+V^*(s)-\underset{a}{max}A^*(s,a) ,它输入的是当前状态,输出由三部分组成:一个向量、一个实数、向量中最大得到分量(实数) 。输出也是一个向量,其中向量加上实数就是将向量的每一个分量都加上这个实数。

现在出现一个问题:我们为什么要在网络中加入 \underset{a}{max}A^*(s,a;w^A) 这一项呢?我们先考虑Q^*(s,a;w)=A^*(s,a;w^A)+V^*(s;w^V) ,很容易知道 Q=A+V 这个分解不唯一,这说明AV这两个网络会不稳定,它们只需要分别加减某个常数即可保持 Q 不发生改变,我们希望得到的两个网络是唯一的,于是我们引入\underset{a}{max}A^*(s,a;w^A),网络 A 的变化也会使它变化,比如说 A 变大10,那么A中最大分量也会变大10,两者相减这个变化就被抵消了,那么V也就不发生改变了,保证了两个网络的稳定性。但是在实际应用中实践证明 使用 \underset{a}{mean}A^*(s,a;w^A) 而不是\underset{a}{max}A^*(s,a;w^A)效果会更好。

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
DQN(Deep Q-Network)是一种使用深度神经网络实现的强化学习算法,用于解决离散动作空间的问题。在PyTorch中实现DQN可以分为以下几个步骤: 1. 定义神经网络:使用PyTorch定义一个包含多个全连接层的神经网络,输入为状态空间的维度,输出为动作空间的维度。 ```python import torch.nn as nn import torch.nn.functional as F class QNet(nn.Module): def __init__(self, state_dim, action_dim): super(QNet, self).__init__() self.fc1 = nn.Linear(state_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 2. 定义经验回放缓存:包含多条经验,每条经验包含一个状态、一个动作、一个奖励和下一个状态。 ```python import random class ReplayBuffer(object): def __init__(self, max_size): self.buffer = [] self.max_size = max_size def push(self, state, action, reward, next_state): if len(self.buffer) < self.max_size: self.buffer.append((state, action, reward, next_state)) else: self.buffer.pop(0) self.buffer.append((state, action, reward, next_state)) def sample(self, batch_size): state, action, reward, next_state = zip(*random.sample(self.buffer, batch_size)) return torch.stack(state), torch.tensor(action), torch.tensor(reward), torch.stack(next_state) ``` 3. 定义DQN算法:使用PyTorch定义DQN算法,包含训练和预测两个方法。 ```python class DQN(object): def __init__(self, state_dim, action_dim, gamma, epsilon, lr): self.qnet = QNet(state_dim, action_dim) self.target_qnet = QNet(state_dim, action_dim) self.gamma = gamma self.epsilon = epsilon self.lr = lr self.optimizer = torch.optim.Adam(self.qnet.parameters(), lr=self.lr) self.buffer = ReplayBuffer(100000) self.loss_fn = nn.MSELoss() def act(self, state): if random.random() < self.epsilon: return random.randint(0, action_dim - 1) else: with torch.no_grad(): q_values = self.qnet(state) return q_values.argmax().item() def train(self, batch_size): state, action, reward, next_state = self.buffer.sample(batch_size) q_values = self.qnet(state).gather(1, action.unsqueeze(1)).squeeze(1) target_q_values = self.target_qnet(next_state).max(1)[0].detach() expected_q_values = reward + self.gamma * target_q_values loss = self.loss_fn(q_values, expected_q_values) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def update_target_qnet(self): self.target_qnet.load_state_dict(self.qnet.state_dict()) ``` 4. 训练模型:使用DQN算法进行训练,并更新目标Q网络。 ```python dqn = DQN(state_dim, action_dim, gamma=0.99, epsilon=1.0, lr=0.001) for episode in range(num_episodes): state = env.reset() total_reward = 0 for step in range(max_steps): action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) dqn.buffer.push(torch.tensor(state, dtype=torch.float32), action, reward, torch.tensor(next_state, dtype=torch.float32)) state = next_state total_reward += reward if len(dqn.buffer.buffer) > batch_size: dqn.train(batch_size) if step % target_update == 0: dqn.update_target_qnet() if done: break dqn.epsilon = max(0.01, dqn.epsilon * 0.995) ``` 5. 测试模型:使用训练好的模型进行测试。 ```python total_reward = 0 state = env.reset() while True: action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward if done: break print("Total reward: {}".format(total_reward)) ``` 以上就是在PyTorch中实现DQN强化学习的基本步骤。需要注意的是,DQN算法中还有很多细节和超参数需要调整,具体实现过程需要根据具体问题进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值