时间序列分析方法汇总对比及优缺点和适用情况(中)-- 6.自回归积分移动平均模型 7. 季节性ARIMA 8. 乘法季节性分解 9. 长短期记忆网络 10. Prophetic模型

目录

6. 自回归积分移动平均模型(ARIMA)

7. 季节性ARIMA(Seasonal ARIMA, SARIMA)

8. 乘法季节性分解(Multiplicative Seasonal Decomposition)

9. 长短期记忆网络(Long Short-Term Memory, LSTM)

10. Prophetic模型(Prophet)


 

6. 自回归积分移动平均模型(ARIMA)

ARIMA模型在ARMA模型的基础上增加了差分运算,以处理非平稳时间序列。它包含三个参数:自回归阶数(p)、差分次数(d)和移动平均阶数(q)。

优点

  • 适用于非平稳时间序列。
  • 灵活性高。

缺点

  • 参数选择和模型识别较复杂。
  • 对于长时间预测效果不佳。

适用情况

  • 适用于非平稳的时间序列。
  • 用于中短期预测。

7. 季节性ARIMA(Seasonal ARIMA, SARIMA)

SARIMA模型在ARIMA模型的基础上加入了季节性成分,适用于具有季节性波动的时间序列数据。

优点

  • 适用于具有季节性和周期性的时间序列。
  • 能同时处理趋势和季节性。

缺点

  • 参数选择和模型识别较复杂。
  • 计算量较大。

适用情况

  • 适用于具有季节性和趋势的时间序列。
  • 用于季节性模式的预测。

8. 乘法季节性分解(Multiplicative Seasonal Decomposition)

该方法通过分解时间序列为趋势、季节性和残差三部分,适用于分析和预测具有季节性的时间序列。

优点

  • 能分解时间序列的不同成分。
  • 对季节性分析效果好。

缺点

  • 复杂度较高。
  • 需要大量的数据进行分解。

适用情况

  • 用于分析和预测具有显著季节性和趋势的时间序列。

9. 长短期记忆网络(Long Short-Term Memory, LSTM)

LSTM是深度学习中的一种特殊的递归神经网络(RNN),擅长处理时间序列预测中的长依赖关系问题。

优点

  • 适用于捕捉长时间依赖关系。
  • 能处理非线性时间序列。

缺点

  • 计算量大,训练时间长。
  • 需要大量数据进行训练。

适用情况

  • 用于长时间依赖和复杂模式的时间序列预测。
  • 适用于大规模数据集。

10. Prophetic模型(Prophet)

Prophet是由Facebook开发的一种时间序列预测工具,旨在处理具有季节性和趋势的时间序列数据。

优点

  • 易于使用,适合业务人员。
  • 能处理缺失数据和异常值。
  • 能自动检测并处理季节性变化和假期效应。

缺点

  • 对于极端复杂的时间序列可能效果不佳。
  • 模型复杂度和计算时间较高。

适用情况

  • 适用于有明确季节性和趋势的商业时间序列数据。
  • 用于中短期预测。

 

  • 16
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值