基于Pytorch的强化学习(DQN)之REINFORCE VS A2C

目录

1. 引言

2. 比较

3. 本质联系


1. 引言

我们前面两次学习了与baseline有关的两种算法:REINFORCE 和 A2C,仔细阅读的同学会发现两者的神经网络的结构是一致的,那么这两者究竟有什么关系呢?

2. 比较

我们先来看看两者的算法

REINFORCE:

  1. 观测到从 t 时刻到游戏结束的一个trajectory (s_t,a_t,r_t,...,s_n,a_n,r_n)
  2. 计算观测到的return u_t=\sum_{i=t}^{n}\gamma^{i-t}r_i
  3. 计算误差 \delta_t=v(s_t;w)-u_t
  4. 更新策略网络 \theta\leftarrow \theta-\beta\,\delta_t\frac{\partial \,\ln{\pi}(a_t|s_t;\theta)}{\partial \,\theta}
  5. 更新价值网络 w\leftarrow w-\alpha\delta_t\,\frac{\partial \,v(s_t;w)}{\partial \,w}

A2C:

  1. 观测到一个 transition (s_t,a_t,r_t,s_{t+1})
  2. 计算TD target y_t=r_t+\gamma v(s_{t+1};w)
  3. 计算TD error \delta_t=v(s_t;w)-y_t
  4. 更新策略网络 \theta\leftarrow \theta-\beta\,\delta_t\frac{\partial \,\ln{\pi}(a_t|s_t;\theta)}{\partial \,\theta}
  5. 更新价值网络 w\leftarrow w-\alpha\delta_t\,\frac{\partial \,v(s_t;w)}{\partial \,w}

我们可以看到两者不同的地方有三处:1,2,3。先看 REINFORCE 算法,REINFORCE 算法是以 t 时刻的 return 为目标,所以我们要先观测到是一个trajectory,使用baseline单纯只是为了减小随机过程的方差,使其收敛更快。再来看A2C算法,A2C本质上是一个Actor-Critic方法,是基于TD算法的,所以使用的是部分真实的信息而不是完全真实的信息,所以只需要观测到一个transition就行了而不需要等到游戏结束,这两者参数更新的方式都是一样的。

3. 本质联系

两种算法在本质上是有联系的,由于A2C是基于TD算法的,于是在A2C的第2步中,我们可以使用Multi-step方法 来提升收敛速度,也就是说我们修改TD target为 y_t=\sum_{i=0}^{m}\gamma^{i}r_{t+i}+\gamma^{m+1}v(s_{t+m+1};w),当 m=n-t 时TD target便变成了 t 时刻的return,A2C便变成了REINFORCE,所以我们可以将REINFORCE看成时A2C的一个特例,这便是两者的本质联系。

  • 7
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
DQN(Deep Q-Network)是一种使用深度神经网络实现的强化学习算法,用于解决离散动作空间的问题。在PyTorch中实现DQN可以分为以下几个步骤: 1. 定义神经网络:使用PyTorch定义一个包含多个全连接层的神经网络,输入为状态空间的维度,输出为动作空间的维度。 ```python import torch.nn as nn import torch.nn.functional as F class QNet(nn.Module): def __init__(self, state_dim, action_dim): super(QNet, self).__init__() self.fc1 = nn.Linear(state_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 2. 定义经验回放缓存:包含多条经验,每条经验包含一个状态、一个动作、一个奖励和下一个状态。 ```python import random class ReplayBuffer(object): def __init__(self, max_size): self.buffer = [] self.max_size = max_size def push(self, state, action, reward, next_state): if len(self.buffer) < self.max_size: self.buffer.append((state, action, reward, next_state)) else: self.buffer.pop(0) self.buffer.append((state, action, reward, next_state)) def sample(self, batch_size): state, action, reward, next_state = zip(*random.sample(self.buffer, batch_size)) return torch.stack(state), torch.tensor(action), torch.tensor(reward), torch.stack(next_state) ``` 3. 定义DQN算法:使用PyTorch定义DQN算法,包含训练和预测两个方法。 ```python class DQN(object): def __init__(self, state_dim, action_dim, gamma, epsilon, lr): self.qnet = QNet(state_dim, action_dim) self.target_qnet = QNet(state_dim, action_dim) self.gamma = gamma self.epsilon = epsilon self.lr = lr self.optimizer = torch.optim.Adam(self.qnet.parameters(), lr=self.lr) self.buffer = ReplayBuffer(100000) self.loss_fn = nn.MSELoss() def act(self, state): if random.random() < self.epsilon: return random.randint(0, action_dim - 1) else: with torch.no_grad(): q_values = self.qnet(state) return q_values.argmax().item() def train(self, batch_size): state, action, reward, next_state = self.buffer.sample(batch_size) q_values = self.qnet(state).gather(1, action.unsqueeze(1)).squeeze(1) target_q_values = self.target_qnet(next_state).max(1)[0].detach() expected_q_values = reward + self.gamma * target_q_values loss = self.loss_fn(q_values, expected_q_values) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def update_target_qnet(self): self.target_qnet.load_state_dict(self.qnet.state_dict()) ``` 4. 训练模型:使用DQN算法进行训练,并更新目标Q网络。 ```python dqn = DQN(state_dim, action_dim, gamma=0.99, epsilon=1.0, lr=0.001) for episode in range(num_episodes): state = env.reset() total_reward = 0 for step in range(max_steps): action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) dqn.buffer.push(torch.tensor(state, dtype=torch.float32), action, reward, torch.tensor(next_state, dtype=torch.float32)) state = next_state total_reward += reward if len(dqn.buffer.buffer) > batch_size: dqn.train(batch_size) if step % target_update == 0: dqn.update_target_qnet() if done: break dqn.epsilon = max(0.01, dqn.epsilon * 0.995) ``` 5. 测试模型:使用训练好的模型进行测试。 ```python total_reward = 0 state = env.reset() while True: action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward if done: break print("Total reward: {}".format(total_reward)) ``` 以上就是在PyTorch中实现DQN强化学习的基本步骤。需要注意的是,DQN算法中还有很多细节和超参数需要调整,具体实现过程需要根据具体问题进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值