一、前言
Actor-Critic
算法是一种基于策略梯度(Policy Gradient)
和价值函数(Value Function)
的强化学习方法,通常被用于解决连续动作空间和高维状态空间下的强化学习问题。该算法将一个Actor
网络和一个Critic
网络组合在一起,通过Actor
网络产生动作,并通过Critic
网络估计状态值函数或状态-动作值函数,最终通过策略梯度算法训练Actor
网络和Critic
网络。Actor-Critic
算法的优点是在处理大型状态空间时具有较高的效率和可扩展性。
二、算法原理
Actor-Critic
算法中的Actor
网络用于学习策略,用于生成动作。Critic
网络则用于学习值函数,用于评估状态或状态动作对的价值。Actor
和Critic
网络之间的交互便是Actor-Critic
算法的核心机制。
Actor-Critic
算法中,我们有两个更新任务:Actor
网络的策略梯度更新和Critic
网络的值函数更新。
在Actor-Critic
算法中使用的策略梯度方法是REINFORCE
算法,该算法的公式如下:
∇ θ J ( θ ) = E t [ ∇ θ l o g π ( a t ∣ s t ) ( Q π ( s t , a t ) − b t ) ] ∇_θ J(θ)=E_t[∇_θ logπ(a_t∣s_t)(Q^π (s_t ,a_t )−b_t )] ∇θJ(θ)=Et[∇θlogπ(at∣st)(Qπ(st,at)−bt)]
其中 J ( θ ) J(\theta) J(θ)表示目标策略的性能, ∇ θ J ( θ ) ∇_θ J ( θ ) ∇θJ(θ)表示策略梯度, π ( a t ∣ s t ) π ( a_t ∣ s_t ) π(a