强化学习------Actor-Critic(AC)算法(附pytorch代码)

本文详细介绍了Actor-Critic算法,包括其原理、如何结合策略梯度和值函数进行学习,以及如何通过PyTorch实现一个基础的Actor-Critic模型,以OpenAIGym的CartPole游戏为例展示了训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

Actor-Critic算法是一种基于策略梯度(Policy Gradient)和价值函数(Value Function)的强化学习方法,通常被用于解决连续动作空间和高维状态空间下的强化学习问题。该算法将一个Actor网络和一个Critic网络组合在一起,通过Actor网络产生动作,并通过Critic网络估计状态值函数或状态-动作值函数,最终通过策略梯度算法训练Actor网络和Critic网络。Actor-Critic算法的优点是在处理大型状态空间时具有较高的效率和可扩展性。

二、算法原理

Actor-Critic算法中的Actor网络用于学习策略,用于生成动作。Critic网络则用于学习值函数,用于评估状态或状态动作对的价值。ActorCritic网络之间的交互便是Actor-Critic算法的核心机制。
Actor-Critic算法中,我们有两个更新任务:Actor网络的策略梯度更新和Critic网络的值函数更新。

Actor-Critic算法中使用的策略梯度方法是REINFORCE算法,该算法的公式如下:

∇ θ J ( θ ) = E t ​ [ ∇ θ l o g π ( a t ∣ s t ​ ) ( Q π ( s t ​ , a t ​ ) − b t ) ] ∇_θ J(θ)=E_t​[∇_θ logπ(a_t∣s_t​)(Q^π (s_t​ ,a_t​ )−b_t )] θJ(θ)=Et[θlogπ(atst)(Qπ(st,at)bt)]

其中 J ( θ ) J(\theta) J(θ)表示目标策略的性能, ∇ θ J ( θ ) ∇_θ J ( θ ) θJ(θ)表示策略梯度, π ( a t ∣ s t ) π ( a_t ∣ s_t ) π(a

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韭菜盖饭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值