python管理
查看python安装了哪些包
在命令行窗口(按win+R打开)中,输入pip list
命令即可。
python、Anaconda、虚拟环境间的关系
python:这里说的是直接从python官网下载后,安装到电脑上的情况。
一般的它的安装路径实在C盘(我的安装路径是在C:\Users\Administrator\AppData\Local\Programs\Python\Python35
)我们初学者在不知道Anaconda的时候会直接装这个。
Anaconda:Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。我们老师在我们一开始接触机器学习的时候就会让我们装这个。
虚拟环境:python3.X里面有这样一个功能,如果你为了避免新建的项目和之前的项目编译环境混乱,可以利用python的虚拟环境创建一个纯净的python编译环境。这个编译环境就像新装的python一样,你新建的项目需要什么包,你就安装什么包,不用担心安装的包跟之前的编译环境混合。
我之前安装的python版本是直接从官网下载的3.5版本,最近学习机器学习又新装了Anaconda(python是3.6版本的),一开始不明白这个的用法,加上自己有点“强迫症”,对比了一下,总算是理清楚它们间的关系了。
python3.X 和Anaconda其实作用是一样的,都有python的编译器,但Anaconda中又集成了很多科学计算的包的,更适合用来学习机器学习。虽然我是才安装Anaconda不久,但我觉得我会喜欢上用Anaconda的,因为python安装Scrapy
库之前需要安装很多依赖库,需要四、五步才能安装完成,但Anconda只需要一个命令conda install scrapy
就可以了。
虚拟环境又是一个编译环境,也有独立的文件夹存放安装的库。Anaconda也可以有虚拟环境。其实不管是python、Anaconda还是虚拟环境,我们在使用Pycharm都可以在编译器选项中选择我们想要的编译环境。