零基础⼊⻔CV-Task3 字符识别模型

在前面的章节,我们讲解了赛题的背景知识和赛题数据的读取。本章开始构建一个字符识别模型,基于赛题理解本章将构建一个定长多字符分类模型。

本章将会讲解卷积神经网络(Convolutional Neural Netword, CNN)的常见层,并从头搭建一个字符识别模型。

4.1 学习目标

  1. 学习CNN 基础和原理
  2. 使用 PyTorch 框架构建 CNN 模型,并完成训练。

4.2 CNN 介绍

卷积神经网络(简称CNN)是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN 在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN 是解决图像分类、图像检索、物体检测和语义分割的主流模型。

CNN 每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输入。随着网络层的增加卷积核会逐渐扩大感受野,并缩减图像的尺寸。

CNN 是一种层次模型,输入的是原始的像素数据。CNN 通过卷积(convolution)、池化(pooling)、非线性激活函数(non-linear activation function)和全连接层(fully connected layer)构成。

如下图所示为 LeNet 网络结构,是非常经典的字符识别模型。两个卷积层,两个池化层,两个全连接层组成。卷积核都是 5 ∗ 5 5*5 55,stride=1,池化层使用最大池化。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-beMaAP2G-1590499742780)(F:%5Cpython%5C%E5%A4%A9%E6%B1%A0%5C%E9%9B%B6%E5%9F%BA%E7%A1%80%E5%85%A5%E9%97%A8cv%E8%B5%9B%E4%BA%8B-%E6%8E%A5%E6%99%AF%E7%BC%96%E7%A0%81%E8%AF%86%E5%88%AB%5Cupload%5Cimage-20200526205423511.png)]

通过多次卷积和池化,CNN 的最后一层将输入的图像像素映射为具体的输出。如在分类任务中会转换为不同类别的概率输出,然后计算真实标签与 CNN 模型的预测结果的差异,并通过反向传播更新每层的参数,并在更新完成后再次前向传播,如此反复直到训练完成。

与传统机器学习模型相比,CNN 具有一种端到端(End to End)的思路。在 CNN 训练过程中是直接从图像像素到最终的输出,并不涉及到具体的特征提取和构建模型的过程,也不需要人工的参与。

4.3 CNN 发展

随着网络结构的发展,研究人员最初发现网络模型结构越深、网络参数越多,模型的精度更优。比较典型的是 AlexNet、VGG、InceptionV3 和 ResNet 的发展脉络。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hxLP6Xr0-1590499742793)(C:%5CUsers%5C92039%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20200526210635398.png)]

LeNet-5(1998)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LEDwID3F-1590499742809)(C:%5CUsers%5C92039%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20200526211317601.png)]

AlexNet(2012)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-38zmfd19-1590499742813)(C:%5CUsers%5C92039%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20200526211334808.png)]

VGG-16(2014)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QwaacZnZ-1590499742816)(C:%5CUsers%5C92039%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20200526211427722.png)]

Inception-v1(2014)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ykp5Brtb-1590499742818)(C:%5CUsers%5C92039%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20200526211453271.png)]

ResNet-50(2015)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bvjyBzIX-1590499742821)(C:%5CUsers%5C92039%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20200526211517376.png)]

PyTorch 构建 CNN 模型

在上一章节我们讲解了如何使用 PyTorch 来读取赛题数据集,本节我们使用本章学习到的知识构建一个简单的 CNN 模型,完成字符识别功能。

在 PyTorch 中构建 CNN 模型非常容易,只需要定义好模型的参数和正向传播即可,PyTorch 会根据正向传播自动计算反向传播。

在本章我们会构建一个非常简单的 CNN ,然后进行训练。这个CNN 模型包括两个卷积层,最后并联 6 个全连接层进行分类。

import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True

import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset

<div STYLE="page-break-after: always;"></div>
# 定义模型
class SVHN_Model1(nn.Module):
	def __init__(self):
 		super(SVHN_Model1, self).__init__()
 		# CNN提取特征模块
 		self.cnn = nn.Sequential(
 			nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
 			nn.ReLU(), 
 			nn.MaxPool2d(2),
			nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
 			nn.ReLU(),
 			nn.MaxPool2d(2),
 )
 
 		self.fc1 = nn.Linear(32*3*7, 11)
		self.fc2 = nn.Linear(32*3*7, 11)
 		self.fc3 = nn.Linear(32*3*7, 11)
 		self.fc4 = nn.Linear(32*3*7, 11)
 		self.fc5 = nn.Linear(32*3*7, 11)
 		self.fc6 = nn.Linear(32*3*7, 11)
 		
 	def forward(self, img): 
 		feat = self.cnn(img)
        feat = feat.view(feat.shape[0], -1)
 		c1 = self.fc1(feat)
 		c2 = self.fc2(feat)
 		c3 = self.fc3(feat)
 		c4 = self.fc4(feat)
 		c5 = self.fc5(feat)
        c6 = self.fc6(feat)
         return c1, c2, c3, c4, c5, c6
 
model = SVHN_Model1()

接下来是训练代码:

<div STYLE="page-break-after: always;"></div>
# 损失函数
criterion = nn.CrossEntropyLoss()
<div STYLE="page-break-after: always;"></div>
# 优化器
optimizer = torch.optim.Adam(model.parameters(), 0.005)

loss_plot, c0_plot = [], []
<div STYLE="page-break-after: always;"></div>
# 迭代10个Epoch
for epoch in range(10):
 	for data in train_loader:
 		c0, c1, c2, c3, c4, c5 = model(data[0])
 		loss = criterion(c0, data[1][:, 0]) + \
 			criterion(c1, data[1][:, 1]) + \
 			criterion(c2, data[1][:, 2]) + \
 			criterion(c3, data[1][:, 3]) + \
 			criterion(c4, data[1][:, 4]) + \
			criterion(c5, data[1][:, 5])
 	loss /= 6
 	optimizer.zero_grad()
 	loss.backward()
 	optimizer.step()
 
 	loss_plot.append(loss.item())
 	c0_plot.append((c0.argmax(1) == data[1][:, 			0]).sum().item()*1.0 / c0.shape[0])
 
 print(epoch)

在训练完成后,我们可以将训练过程中的损失和准确率进行绘制,如下图所示。从图中可以看出模型的损失在迭代过程中逐渐减小,字符预测的准确率逐渐升高。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jNiviwO0-1590499742823)(C:%5CUsers%5C92039%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20200526212457164.png)]

当然为了追求精度,也可以使用在 ImageNet 数据集上的预训练模型,具体方法如下:

class SVHN_Model2(nn.Module):
 	def __init__(self):
 		super(SVHN_Model1, self).__init__()
 
 		model_conv = models.resnet18(pretrained=True)
 		model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
 		model_conv = nn.Sequential(*list(model_conv.children())[:-1])
 		self.cnn = model_conv
 
 		self.fc1 = nn.Linear(512, 11)
 		self.fc2 = nn.Linear(512, 11)
 		self.fc3 = nn.Linear(512, 11)
 		self.fc4 = nn.Linear(512, 11)
 		self.fc5 = nn.Linear(512, 11)
 
 	def forward(self, img): 
 		feat = self.cnn(img)
 		# print(feat.shape)
 		feat = feat.view(feat.shape[0], -1)
		 c1 = self.fc1(feat)
 		c2 = self.fc2(feat)
 		c3 = self.fc3(feat)
 		c4 = self.fc4(feat)
 		c5 = self.fc5(feat)
 		return c1, c2, c3, c4, c5

4.5 本章小结

在本章中我们介绍了 CNN 以及CNN 的发展,并使用 PyTorch 构建了一个简易的 CNN 模型来完成字符分类任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值