ubuntu22.04-cuda12.4环境配置

ubuntu22.04-cuda12.4环境配置

卸载原驱动

Removing CUDA Toolkit and Driver

删除 CUDA 工具包:

sudo apt-get --purge remove "*cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" \
 "*cusolver*" "*cusparse*" "*gds-tools*" "*npp*" "*nvjpeg*" "nsight*" "*nvvm*"

删除 NVIDIA 驱动程序:

sudo apt-get --purge remove "*nvidia*" "libxnvctrl*"

清理卸载:

sudo apt-get autoremove

安装显卡驱动

安装

CUDA Toolkit 12.4 Downloads CUDA Toolkit 12.6 Downloads

wget https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run
sudo sh cuda_12.4.0_550.54.14_linux.run

若安装失败可查看对应日志,针对性解决

vim /var/log/cuda-installer.log
vim /var/log/nvidia-installer.log

g++版本不对应问题

卸载原g++,gcc

sudo apt-get purge gcc g++

安装对应版本gcc

sudo apt install gcc-12

将对应版本的地址连接到

sudo ln -s /user/bin/gcc-12 /usr/bin/gcc

查看版本是否对应

gcc --version

将gcc目录链接到cc

sudo ln -s /usr/bin/gcc /usr/bin/cc

安装Miniconda

Miniconda软件安装教程(Linux) 清华大学开源软件镜像站

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py38_4.8.3-Linux-x86_64.sh --no-check-certificate
bash Miniconda3-py38_4.8.3-Linux-x86_64.sh

升级conda

搜索可用的conda版本

conda search conda

安装一个较新的版本

conda install conda=24.7.1

安装pytorch

Install PyTorch

conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia

查看是否安装成功

python -c "import torch;print(torch.cuda.device_count())"

安装需要的包

pip install pytorch-lightning -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install timm torchinfo tqdm openpyxl einops
pip install numpy pandas matplotlib scikit-learn fastparquet 
pip install tushare fastapi loguru websockets  
pip install tensorboard==2.12.0 tensorboardx 

Ubuntu 22.04上配置CUDA需要遵循以下步骤: 1. **下载CUDA安装包**: 访问NVIDIA官方网站下载与Ubuntu 22.04兼容的CUDA安装包。选择适当的CUDA版本,例如CUDA Toolkit 11.x或更高版本。 2. **安装CUDA依赖项**: 在安装CUDA之前,需要确保系统已经安装了一些必要的依赖项。可以通过运行以下命令来安装这些依赖项: ```bash sudo apt update sudo apt install -y linux-headers-$(uname -r) build-essential ``` 3. **运行CUDA安装包**: 通过终端导航到下载CUDA安装包的目录,并使用以下命令运行安装程序: ```bash sudo sh cuda_11.x.xxxxLinux.run ``` 请将`cuda_11.x.xxxxLinux.run`替换为你下载的实际文件名。 4. **选择安装类型**: 在安装向导中,选择“Custom”(自定义)安装类型以便你可以选择安装哪些组件。通常情况下,你会想安装CUDA Toolkit,以及Driver(如果你的系统中没有最新的NVIDIA驱动)。 5. **配置环境变量**: 安装完成后,可能需要配置环境变量以便在任何路径下都能使用CUDA命令。编辑`~/.bashrc`文件或全局配置文件,添加以下行: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 然后运行`source ~/.bashrc`或重启系统使更改生效。 6. **验证安装**: 安装完成后,可以通过运行以下命令来验证CUDA是否正确安装: ```bash nvcc --version nvidia-smi ``` `nvcc`命令将显示CUDA编译器的版本,而`nvidia-smi`将显示NVIDIA驱动和设备的状态。 7. **配置GPU加速库**(可选): 如果你在使用深度学习框架(如TensorFlow或PyTorch),可能需要根据框架的要求配置相应的GPU加速库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值