Elasticsearch、IK分词器安装 (docker)

本文详细介绍了如何在Docker环境下部署Elasticsearch单节点,安装IK分词器,配置扩展词汇与停用词,以及启动Kibana进行可视化操作。同时,提供了部署Elasticsearch集群的docker-compose配置示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、部署单点Elasticsearch

1. 创建网络

因为我们还需要部署kibana容器,需要让es和kibana容器互联,所以这里先创建一个网络:

docker network create es-net

2. 查看镜像

docker search elasticsearch

在这里插入图片描述

3. 去https://hub.docker.com选择一个版本

在这里插入图片描述

4. 拉取7.17.7版本

docker pull elasticsearch:7.17.7

5. 准备挂载数据的文件夹

  • 挂载就是就是将宿主机文件夹和容器内的文件夹做映射,这样在向容器内传文件时可以直接传到宿主机映射的文件夹中,更方便修改。

创建三个新的文件夹作为ES挂载用。

cd /var/lib/docker/volumes
mkdir -p es-data/_data
mkdir -p es-logs/_data
mkdir -p es-plugins/_data

6. 创建容器并运行

docker run -d \
	--name es \
    -e ES_JAVA_OPTS="-Xms512m -Xmx512m" \
    -e discovery.type="single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    -v es-logs:/usr/share/elasticsearch/logs \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.17.7

命令解释:

  • -d 后台运行
  • name es 给容器起名叫 es
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":添加系统变量,设置JVM内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入到一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

7. 在浏览器中输入:http://服务器ip:9200 即可看到elasticsearch的响应结果:

在这里插入图片描述

二、安装IK分词器 插件

1. github下载ik插件

在这里插入图片描述

  • 注意版本匹配

在这里插入图片描述

2. 将安装包移动到挂载目录 es-plugins/ik/中

解压

tar -unzip elasticsearch-analysis-ik-7.17.6.zip

删除压缩包

rm -rf elasticsearch-analysis-ik-7.17.6.zip

在这里插入图片描述

3. 修改IK配置文件

进入配置文件

vi plugin-descriptor.properties 

确保elasticsearch 版本和用的一致,不然报错。
在这里插入图片描述

3. 扩展词汇

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IaiAsecX-1658584606747)(assets/image-20210506112225508.png)]

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)新建一个 ext.dic文件

在这里插入图片描述

文件内容:

香精煎鱼
油饼食不食
小黑子
只因哥
香翅捞饭

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f es

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

4. 停用词词典

关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
        
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)在 stopword.dic 添加停用词

跑酷

4)重启elasticsearch

# 重启服务
docker restart elasticsearch

docker restart kibana

# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载stopword.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "跑酷点赞!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

三、部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于操作。

1. 拉取kibana镜像

docker pull kibana:7.17.7

2. 创建并运行kibana容器

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.17.7
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

3. 在浏览器输入地址访问:http://服务器ip:5601,即可看到结果

在这里插入图片描述

4. DevTools发送DSL语句工具

kibana中提供了一个DevTools界面:

在这里插入图片描述

在这里插入图片描述

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

四、部署es集群

部署es集群可以直接使用docker-compose来完成,不过要求你的Linux虚拟机至少有4G的内存空间

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:
  es01:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.17.7
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.17.7
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data02:/usr/share/elasticsearch/data
    networks:
      - elastic
  es03:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.17.7
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic

volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

运行命令

docker-compose up
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值