33. Search in Rotated Sorted Array

 

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

在这样一个数组中找到target,这个数组是递增序列的变体,如4 5 6 7 0 1 2,或5 6 7 0 1 2 3 4

解决方法,可以采用二分法思想:

------------------------------------------------------------------------------------------------------------------------------

假设数组是A,取左边缘为l,右边缘为r,还有中间位置是m。在每次迭代中,分三种情况:
(1)如果target==A[m],那么m就是我们要的结果,直接返回m;

(2)如果A[m]<A[r](情况就类似于:如5 6 7 0 1 2 3 4中,m = 3,r = 7。A[3] = 0 < A[7] = 1)
    那么说明从m到r右半部分一定是有序的,此时只需要判断target是不是在m到r之间,如果是则把左边缘移到m+1,否则就target在另一半,即把右边缘移到m-1。

(3)如果A[m]>=A[r](情况就类似于:如4 5 6 7 0 1 2中,m = 3,r = 7。A[3] = 7 >= A[7] = 0)
     那么说明从l到m左半部分一定是有序的,同样只需要判断target是否在这个范围内,相应的移动边缘即可

 -------------------------------------------------------------------------------------------------------------------------------

根据以上方法,每次可以切掉一半的数据,所以算法的时间复杂度是O(logn),空间复杂度是O(1)。代码如下:

class Solution {
public:
    int search(vector<int>& nums, int target){
        if(nums.capacity() == 0)  
            return -1;  
        int l = 0;    //左边缘
        int r = nums.capacity() - 1;  //右边缘
        while(l <= r){  
            int m = (l + r) / 2;  
            if(target == nums[m])  
                return m;  
if(nums[m] < nums[r]){   //情况类似5 6 7 0 1 2 3 4(从中间到最后有序)
         if(target > nums[m] && target <= nums[r])   //这个数在右半部分
                    l = m + 1;  
                else  
                    r = m - 1;  
            }  
            else{                    //情况类似4 5 6 7 0 1 2(从左边缘到中间有序)
          if(target >= nums[l] && target < nums[m])   //这个数在左半部分
                    r = m - 1;  
                else  
                    l = m + 1;                      
            }  
        }  
        return -1;  
    }  
};

 

在Python中,并没有一个内建函数或方法叫做`.minimum_rotated_rectangle`。不过,如果你是在图像处理或计算机视觉的上下文中提到这个术语,可能是你在使用某个库或框架时接触到的函数或方法,它用于计算并返回最小旋转矩形。 在OpenCV库中,可以使用`minAreaRect()`函数来找到给定点集的最小旋转矩形。这个函数返回一个`RotatedRect`对象,包含了旋转矩形的中心点、宽度、高度以及旋转角度。最小旋转矩形是能够覆盖所有点且面积最小的矩形。 以下是一个使用OpenCV实现最小旋转矩形的例子: ```python import cv2 import numpy as np # 假设points是一个二维点集,例如 [[x1, y1], [x2, y2], ..., [xn, yn]] points = np.array([[10, 10], [10, 30], [30, 30], [30, 10]], dtype=np.float32) # 使用minAreaRect函数计算最小旋转矩形 rect = cv2.minAreaRect(points) # 输出旋转矩形的中心点、尺寸和旋转角度 print("旋转矩形的中心点:", rect[0]) print("旋转矩形的尺寸:", rect[1]) print("旋转矩形的角度:", rect[2]) # 绘制旋转矩形 box = cv2.boxPoints(rect) box = np.int0(box) cv2.drawContours(image, [box], 0, (0, 255, 0), 2) ``` 在这段代码中,首先创建了一个点集`points`,然后使用`minAreaRect()`函数计算出最小旋转矩形。`rect[0]`是旋转矩形的中心,`rect[1]`是旋转矩形的尺寸(宽度和高度),`rect[2]`是旋转矩形的角度。最后,使用`boxPoints()`函数和`drawContours()`函数将旋转矩形绘制到图像上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值