题目描述(中等难度)
升序排列的整数数组 nums
在预先未知的某个点上进行了旋转(例如, [0,1,2,4,5,6,7] 经旋转后可能变为 [4,5,6,7,0,1,2] )。
请你在数组中搜索 target
,如果数组中存在这个目标值,则返回它的索引,否则返回 -1 。
其实就是一个排序好的数组,把前边的若干的个数,一起移动到末尾就行了。然后在 log (n)
下找到给定数字的下标。
总的来说,log(n)
,我们肯定得用二分的方法了。
首先我们想一下变化前,正常的升序。我们怎么找给定的数字。
我们每次只关心中间位置的值(这一点很重要),也就是上图 3 位置的数值,如果 target 小于 3 位置的值,我们就把 3 4 5 6 抛弃。然后看新的中间的位置,也就是 1 位置的数值。 3 位置, 1 位置的值是多少呢?我们有一个数组。
3 位置的值,刚好就是数组下标为 3 的值,1 位置的值刚好就是下标为 1 的值。
那么如果,按题目要求的,变化后,3 位置 和 1 位置的值怎么求呢? 此时我们的数组变成下边这样,我们依旧把值从小到大排列。
此时 3 位置的数值对应为数组下标是 0 的值,1 位置的值对应数组下标是 5 的值。任意位置的对应规则是什么呢?0 -> 4, 1 - > 5,4 ->1,就是就是 (位置 + 偏移 )% 数组的长度。这里就是加上 4 模 7。
问题转换为怎么去求出这个偏移。
我们只要知道任意一个位置对应的数组下标就可以了,为了方便我们可以求位置为 0 的值对应的下标(数组中最小的数对应的下标),0 位置对应的下标就是我们要求的偏移了(0 + 偏移 = 数组下标)。这里 nums = [ 4, 5, 6, 7, 0, 1, 2] ,我们就需要去求数值 0 的下标。
求最小值的下标,因为题目要求时间复杂度是 O(log ( n )),所以我们必须采取二分的方法去找,二分的方法就要保证每次比较后,去掉一半的元素。这里我们去比较中点和端点值的情况,那么是根据中点和起点比较,还是中点和终点比较呢?我们来分析下。
mid 和 start 比较
mid > start : 最小值在左半部分。
mid < start: 最小值在左半部分。
无论大于小于,最小值都在左半部分,所以 mid 和 start 比较是不可取的。
mid 和 end 比较
mid < end:最小值在左半部分。
mid > end:最小值在右半部分。
所以我们只需要把 mid 和 end 比较,mid < end 丢弃右半部分(更新 end = mid),mid > end 丢弃左半部分(更新 start = mid)。直到 end 等于 start 时候结束就可以了。
但这样会有一个问题的,对于下边的例子,就会遇到死循环了。
问题出在,当数组剩偶数长度的时候,mid = (start + end)/ 2,mid 取的是左端点。上图的例子, mid > end, 更新 start = mid,start 位置并不会变化。那么下一次 mid 的值也不会变,就死循环了。所以,我们要更新 start = mid + 1。
综上,找最小值的下标的代码就出来了,同时,由于我们找的是位置 0 对应的下标,所以偏移就是最小值的下标。
while (start < end) {
int mid = (start + end) / 2;
if (nums[mid] > nums[end]) {
start = mid + 1 ;
} else {
end = mid;
}
}
int bias = start;
当然,我们是找最小值对应的下标,然后求出了偏移。我们也可以找最大值的对应的下标,分析思路和之前是一样的,主要还是要注意一下边界的情况,然后就可以求出偏移。
while (start < end) {
int mid = Math.round(((float)start + end) / 2);
if (nums[mid] < nums[start]) {
end = mid - 1;
} else {
start = mid;
}
}
int n = nums.length;
bias = (start + n) - (n - 1); //此时 start 是最大值的数组下标,加上模长 n,减去最大值的位置 n - 1 ,就得到了偏移。因为 (位置 + 偏移)% n = 数组下标,即 (n - 1 + 偏移)% n = start,n - 1 加偏移超过了 n,所以取模理解成减 n
有了偏移,我们就可以愉快的找目标值的数组下标了。
public class Search_in_Rotated_Sorted_Array {
public static int search (int[] nums, int target) {
int start = 0;
int end = nums.length - 1;
//找出最大值的数组下标
while (start < end) {
int mid = Math.round(((float)start + end) / 2);
if (nums[mid] < nums[start]) {
end = mid - 1;
} else {
start = mid;
}
}
int n = nums.length;
int bias = (start + n) - (n - 1); //得到偏移
start = 0;
end = nums.length - 1;
while (start <= end) {
int mid = (start + end) / 2;//中间的位置
int mid_change = (mid + bias) % nums.length;//中间的位置对应的数组下标
int value = nums[mid_change];//中间位置的值
if (target == value) {
return mid_change;
}
if (target < value) {
end = mid - 1;
} else {
start = mid + 1;
}
}
return -1;
}
public static void main(String args[]) {
int [] nums= {4,5,6,7,0,1,2};
int target=0;
int ans=search(nums,target);
System.out.println(ans);
}
}
时间复杂度:O(log(n))。
空间复杂度:O(1)。