QR法求解特征值特征向量

本文介绍了QR法求解特征值和特征向量的原理与步骤。首先阐述了QR分解的基本思想,即非奇异矩阵可以通过正交矩阵和上三角矩阵的乘积表示,并详细解释了Householder变换在QR分解中的应用。接着,展示了QR迭代算法,用于求解对称矩阵的特征值和特征向量,并通过代码实例验证了算法的正确性。需要注意的是,对于非对称矩阵,QR法只能得到特征值,特征向量则需要通过其他方法如反幂法求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 QR原理

理论依据:任意一个非奇异矩阵(满秩的方阵)A都可以分解为一个正交矩阵Q和一个上三角矩阵R的乘积,且当R对角元符号确定时,分解是唯一的。QR分解是一种迭代方法,迭代格式如下: 在这里插入图片描述
当Ak基本收敛到为上三角矩阵时,迭代完成,此时主对角元素就是特征值。

特别地:当A是对称阵的时候,Ak是对角阵Λ,Q=Qk-1Qk-2…Q1就是其正交特征向量矩,有QTAQ=Ak=Λ,即A正交对角化与Ak。

如何理解?我们看下图公式:
在这里插入图片描述

所以,QR迭代过程从数学的角度来想其实就是不断正交化的过程。

二 QR算法步骤

1.Householder变换进行QR分解

反射矩阵:任取单位向量w,反射矩阵H=E-2WWT ,显然HHT =E,H是正交阵

定理:任取两个模长相等的的向量x,y,一定存在一个反射矩阵H,使得Hx=y,
此时w=(x-y)/(|x-y|)(向量的差除以向量差的模)

应用:现在我们取矩阵的一列为x,m=|x|,y=m*[1,0,0,…0]T 根据上面的定理求出H,使得Hx=y,是不是通过正交变化就把那一列化成了[m,0,0,0]T ,这样就达到了将下三角元素全化为0的效果。看下图,举个例子来说明QR分解过程:
在这里插入图片描述
看懂上述过程就知道,Householder变换是利用了反射定理,经过n-1轮正交变换,将下三角元素全部化为0,从而得到上三角矩阵R,将所有H矩阵左乘运算再转置得到正交矩阵Q,即A=QR

我们看看QR分解的代码:

#QR分解
def qrSplit(A):
    n=A.shape[0]#A的维度
    Q=[[]]
    R=A
    for i in range(0,n-1):
        B=R
        if i!=0:
            #删除一行一列,得n-1阶子阵
            B=B[i:,i:]
        #取第一列向量
        x=B[:,0]
        #向量摸长
        m=np.linalg.norm(x)
        #生成一个模长为m,其余项为0的向量y
        y=[0 for j in range(0,n-i)]
        y[0]=m
        #计算householder反射矩阵
        #w = (x-y)/||x-y||
        w=
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值