一 QR原理
理论依据:任意一个非奇异矩阵(满秩的方阵)A都可以分解为一个正交矩阵Q和一个上三角矩阵R的乘积,且当R对角元符号确定时,分解是唯一的。QR分解是一种迭代方法,迭代格式如下:
当Ak基本收敛到为上三角矩阵时,迭代完成,此时主对角元素就是特征值。
特别地:当A是对称阵的时候,Ak是对角阵Λ,Q=Qk-1Qk-2…Q1就是其正交特征向量矩,有QTAQ=Ak=Λ,即A正交对角化与Ak。
如何理解?我们看下图公式:
所以,QR迭代过程从数学的角度来想其实就是不断正交化的过程。
二 QR算法步骤
1.Householder变换进行QR分解
反射矩阵:任取单位向量w,反射矩阵H=E-2WWT ,显然HHT =E,H是正交阵
定理:任取两个模长相等的的向量x,y,一定存在一个反射矩阵H,使得Hx=y,
此时w=(x-y)/(|x-y|)(向量的差除以向量差的模)
应用:现在我们取矩阵的一列为x,m=|x|,y=m*[1,0,0,…0]T 根据上面的定理求出H,使得Hx=y,是不是通过正交变化就把那一列化成了[m,0,0,0]T ,这样就达到了将下三角元素全化为0的效果。看下图,举个例子来说明QR分解过程:
看懂上述过程就知道,Householder变换是利用了反射定理,经过n-1轮正交变换,将下三角元素全部化为0,从而得到上三角矩阵R,将所有H矩阵左乘运算再转置得到正交矩阵Q,即A=QR
我们看看QR分解的代码:
#QR分解
def qrSplit(A):
n=A.shape[0]#A的维度
Q=[[]]
R=A
for i in range(0,n-1):
B=R
if i!=0:
#删除一行一列,得n-1阶子阵
B=B[i:,i:]
#取第一列向量
x=B[:,0]
#向量摸长
m=np.linalg.norm(x)
#生成一个模长为m,其余项为0的向量y
y=[0 for j in range(0,n-i)]
y[0]=m
#计算householder反射矩阵
#w = (x-y)/||x-y||
w=